Cargando…

Development of a Virus-Like Particle-Based Anti-HER2 Breast Cancer Vaccine

SIMPLE SUMMARY: Virus-like particles (VLPs) have attracted significant interest as immunotherapy platforms and cancer vaccines for inducing antigen-specific immune responses against tumors. We prepared a human epidermal growth factor receptor-2 (HER2) cancer vaccine, by conjugating the HER2-derived...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, He, Steinmetz, Nicole F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230452/
https://www.ncbi.nlm.nih.gov/pubmed/34200802
http://dx.doi.org/10.3390/cancers13122909
_version_ 1783713213219602432
author Hu, He
Steinmetz, Nicole F.
author_facet Hu, He
Steinmetz, Nicole F.
author_sort Hu, He
collection PubMed
description SIMPLE SUMMARY: Virus-like particles (VLPs) have attracted significant interest as immunotherapy platforms and cancer vaccines for inducing antigen-specific immune responses against tumors. We prepared a human epidermal growth factor receptor-2 (HER2) cancer vaccine, by conjugating the HER2-derived CH401 epitope to the external surface of Physalis mottle virus (PhMV)-like particles via copper-free click chemistry. Another candidate was prepared by loading Toll-like receptor 9 (TLR9) agonists as adjuvant into the interior cavity of PhMV-CH401—although the addition of the adjuvant conferred no additional immune priming. The VLP-based anti-HER2 vaccine candidate was administered subcutaneously, using a prime-boost immunization schedule and BALB/c mice. The vaccine candidate elicited a strong immune response, including high titers of HER2-specific immunoglobulins and increased the toxicity of antisera to DDHER2 tumor cells. DDHER2 tumor challenge studies demonstrated efficacy, as evident from the delayed onset of tumor growth and the prolonged survival of the vaccinated vs. naïve BALB/C mice. ABSTRACT: To develop a human epidermal growth factor receptor-2 (HER2)-specific cancer vaccine, using a plant virus-like particle (VLP) platform. Copper-free click chemistry and infusion encapsulation protocols were developed to prepare VLPs displaying the HER2-derived CH401 peptide epitope, with and without Toll-like receptor 9 (TLR9) agonists loaded into the interior cavity of the VLPs; Physalis mottle virus (PhMV)-based VLPs were used. After prime-boost immunization of BALB/c mice through subcutaneous administration of the vaccine candidates, sera were collected and analyzed by enzyme-linked immunosorbent assay (ELISA) for the CH401-specific antibodies; Th1 vs. Th2 bias was determined by antibody subtyping and splenocyte assay. Efficacy was assessed by tumor challenge using DDHER2 tumor cells. We successful developed two VLP-based anti-HER2 vaccine candidates—PhMV-CH401 vs. CpG-PhMV-CH401; however, the addition of the CpG adjuvant did not confer additional immune priming. Both VLP-based vaccine candidates elicited a strong immune response, including high titers of HER2-specific immunoglobulins and increased toxicity of antisera to DDHER2 tumor cells. DDHER2 tumor growth was delayed, leading to prolonged survival of the vaccinated vs. naïve BALB/C mice. The PhMV-based anti-HER2 vaccine PhMV-CH401, demonstrated efficacy as an anti-HER2 cancer vaccine. Our studies highlight that VLPs derived from PhMV are a promising platform to develop cancer vaccines.
format Online
Article
Text
id pubmed-8230452
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-82304522021-06-26 Development of a Virus-Like Particle-Based Anti-HER2 Breast Cancer Vaccine Hu, He Steinmetz, Nicole F. Cancers (Basel) Article SIMPLE SUMMARY: Virus-like particles (VLPs) have attracted significant interest as immunotherapy platforms and cancer vaccines for inducing antigen-specific immune responses against tumors. We prepared a human epidermal growth factor receptor-2 (HER2) cancer vaccine, by conjugating the HER2-derived CH401 epitope to the external surface of Physalis mottle virus (PhMV)-like particles via copper-free click chemistry. Another candidate was prepared by loading Toll-like receptor 9 (TLR9) agonists as adjuvant into the interior cavity of PhMV-CH401—although the addition of the adjuvant conferred no additional immune priming. The VLP-based anti-HER2 vaccine candidate was administered subcutaneously, using a prime-boost immunization schedule and BALB/c mice. The vaccine candidate elicited a strong immune response, including high titers of HER2-specific immunoglobulins and increased the toxicity of antisera to DDHER2 tumor cells. DDHER2 tumor challenge studies demonstrated efficacy, as evident from the delayed onset of tumor growth and the prolonged survival of the vaccinated vs. naïve BALB/C mice. ABSTRACT: To develop a human epidermal growth factor receptor-2 (HER2)-specific cancer vaccine, using a plant virus-like particle (VLP) platform. Copper-free click chemistry and infusion encapsulation protocols were developed to prepare VLPs displaying the HER2-derived CH401 peptide epitope, with and without Toll-like receptor 9 (TLR9) agonists loaded into the interior cavity of the VLPs; Physalis mottle virus (PhMV)-based VLPs were used. After prime-boost immunization of BALB/c mice through subcutaneous administration of the vaccine candidates, sera were collected and analyzed by enzyme-linked immunosorbent assay (ELISA) for the CH401-specific antibodies; Th1 vs. Th2 bias was determined by antibody subtyping and splenocyte assay. Efficacy was assessed by tumor challenge using DDHER2 tumor cells. We successful developed two VLP-based anti-HER2 vaccine candidates—PhMV-CH401 vs. CpG-PhMV-CH401; however, the addition of the CpG adjuvant did not confer additional immune priming. Both VLP-based vaccine candidates elicited a strong immune response, including high titers of HER2-specific immunoglobulins and increased toxicity of antisera to DDHER2 tumor cells. DDHER2 tumor growth was delayed, leading to prolonged survival of the vaccinated vs. naïve BALB/C mice. The PhMV-based anti-HER2 vaccine PhMV-CH401, demonstrated efficacy as an anti-HER2 cancer vaccine. Our studies highlight that VLPs derived from PhMV are a promising platform to develop cancer vaccines. MDPI 2021-06-10 /pmc/articles/PMC8230452/ /pubmed/34200802 http://dx.doi.org/10.3390/cancers13122909 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Hu, He
Steinmetz, Nicole F.
Development of a Virus-Like Particle-Based Anti-HER2 Breast Cancer Vaccine
title Development of a Virus-Like Particle-Based Anti-HER2 Breast Cancer Vaccine
title_full Development of a Virus-Like Particle-Based Anti-HER2 Breast Cancer Vaccine
title_fullStr Development of a Virus-Like Particle-Based Anti-HER2 Breast Cancer Vaccine
title_full_unstemmed Development of a Virus-Like Particle-Based Anti-HER2 Breast Cancer Vaccine
title_short Development of a Virus-Like Particle-Based Anti-HER2 Breast Cancer Vaccine
title_sort development of a virus-like particle-based anti-her2 breast cancer vaccine
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230452/
https://www.ncbi.nlm.nih.gov/pubmed/34200802
http://dx.doi.org/10.3390/cancers13122909
work_keys_str_mv AT huhe developmentofaviruslikeparticlebasedantiher2breastcancervaccine
AT steinmetznicolef developmentofaviruslikeparticlebasedantiher2breastcancervaccine