Cargando…

An Ultrafast Active Quenching Active Reset Circuit with 50% SPAD Afterpulsing Reduction in a 28 nm FD-SOI CMOS Technology Using Body Biasing Technique

An ultrafast Active Quenching—Active Reset (AQAR) circuit is presented for the afterpulsing reduction in a Single Photon Avalanche Diode (SPAD). The proposed circuit is designed in a 28 nm Fully Depleted Silicon On Insulator (FD-SOI) CMOS technology. By exploiting the body biasing technique, the ava...

Descripción completa

Detalles Bibliográficos
Autores principales: Dolatpoor Lakeh, Mohammadreza, Kammerer, Jean-Baptiste, Aguénounon, Enagnon, Issartel, Dylan, Schell, Jean-Baptiste, Rink, Sven, Cathelin, Andreia, Calmon, Francis, Uhring, Wilfried
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230464/
https://www.ncbi.nlm.nih.gov/pubmed/34200801
http://dx.doi.org/10.3390/s21124014
_version_ 1783713216039223296
author Dolatpoor Lakeh, Mohammadreza
Kammerer, Jean-Baptiste
Aguénounon, Enagnon
Issartel, Dylan
Schell, Jean-Baptiste
Rink, Sven
Cathelin, Andreia
Calmon, Francis
Uhring, Wilfried
author_facet Dolatpoor Lakeh, Mohammadreza
Kammerer, Jean-Baptiste
Aguénounon, Enagnon
Issartel, Dylan
Schell, Jean-Baptiste
Rink, Sven
Cathelin, Andreia
Calmon, Francis
Uhring, Wilfried
author_sort Dolatpoor Lakeh, Mohammadreza
collection PubMed
description An ultrafast Active Quenching—Active Reset (AQAR) circuit is presented for the afterpulsing reduction in a Single Photon Avalanche Diode (SPAD). The proposed circuit is designed in a 28 nm Fully Depleted Silicon On Insulator (FD-SOI) CMOS technology. By exploiting the body biasing technique, the avalanche is detected very quickly and, consequently, is quenched very fast. The fast quenching decreases the avalanche charges, therefore resulting in the afterpulsing reduction. Both post-layout and experimental results are presented and are highly in accordance with each other. It is shown that the proposed AQAR circuit is able to detect the avalanche in less than 40 ps and reduce the avalanche charge and the afterpulsing up to 50%.
format Online
Article
Text
id pubmed-8230464
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-82304642021-06-26 An Ultrafast Active Quenching Active Reset Circuit with 50% SPAD Afterpulsing Reduction in a 28 nm FD-SOI CMOS Technology Using Body Biasing Technique Dolatpoor Lakeh, Mohammadreza Kammerer, Jean-Baptiste Aguénounon, Enagnon Issartel, Dylan Schell, Jean-Baptiste Rink, Sven Cathelin, Andreia Calmon, Francis Uhring, Wilfried Sensors (Basel) Article An ultrafast Active Quenching—Active Reset (AQAR) circuit is presented for the afterpulsing reduction in a Single Photon Avalanche Diode (SPAD). The proposed circuit is designed in a 28 nm Fully Depleted Silicon On Insulator (FD-SOI) CMOS technology. By exploiting the body biasing technique, the avalanche is detected very quickly and, consequently, is quenched very fast. The fast quenching decreases the avalanche charges, therefore resulting in the afterpulsing reduction. Both post-layout and experimental results are presented and are highly in accordance with each other. It is shown that the proposed AQAR circuit is able to detect the avalanche in less than 40 ps and reduce the avalanche charge and the afterpulsing up to 50%. MDPI 2021-06-10 /pmc/articles/PMC8230464/ /pubmed/34200801 http://dx.doi.org/10.3390/s21124014 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Dolatpoor Lakeh, Mohammadreza
Kammerer, Jean-Baptiste
Aguénounon, Enagnon
Issartel, Dylan
Schell, Jean-Baptiste
Rink, Sven
Cathelin, Andreia
Calmon, Francis
Uhring, Wilfried
An Ultrafast Active Quenching Active Reset Circuit with 50% SPAD Afterpulsing Reduction in a 28 nm FD-SOI CMOS Technology Using Body Biasing Technique
title An Ultrafast Active Quenching Active Reset Circuit with 50% SPAD Afterpulsing Reduction in a 28 nm FD-SOI CMOS Technology Using Body Biasing Technique
title_full An Ultrafast Active Quenching Active Reset Circuit with 50% SPAD Afterpulsing Reduction in a 28 nm FD-SOI CMOS Technology Using Body Biasing Technique
title_fullStr An Ultrafast Active Quenching Active Reset Circuit with 50% SPAD Afterpulsing Reduction in a 28 nm FD-SOI CMOS Technology Using Body Biasing Technique
title_full_unstemmed An Ultrafast Active Quenching Active Reset Circuit with 50% SPAD Afterpulsing Reduction in a 28 nm FD-SOI CMOS Technology Using Body Biasing Technique
title_short An Ultrafast Active Quenching Active Reset Circuit with 50% SPAD Afterpulsing Reduction in a 28 nm FD-SOI CMOS Technology Using Body Biasing Technique
title_sort ultrafast active quenching active reset circuit with 50% spad afterpulsing reduction in a 28 nm fd-soi cmos technology using body biasing technique
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230464/
https://www.ncbi.nlm.nih.gov/pubmed/34200801
http://dx.doi.org/10.3390/s21124014
work_keys_str_mv AT dolatpoorlakehmohammadreza anultrafastactivequenchingactiveresetcircuitwith50spadafterpulsingreductionina28nmfdsoicmostechnologyusingbodybiasingtechnique
AT kammererjeanbaptiste anultrafastactivequenchingactiveresetcircuitwith50spadafterpulsingreductionina28nmfdsoicmostechnologyusingbodybiasingtechnique
AT aguenounonenagnon anultrafastactivequenchingactiveresetcircuitwith50spadafterpulsingreductionina28nmfdsoicmostechnologyusingbodybiasingtechnique
AT issarteldylan anultrafastactivequenchingactiveresetcircuitwith50spadafterpulsingreductionina28nmfdsoicmostechnologyusingbodybiasingtechnique
AT schelljeanbaptiste anultrafastactivequenchingactiveresetcircuitwith50spadafterpulsingreductionina28nmfdsoicmostechnologyusingbodybiasingtechnique
AT rinksven anultrafastactivequenchingactiveresetcircuitwith50spadafterpulsingreductionina28nmfdsoicmostechnologyusingbodybiasingtechnique
AT cathelinandreia anultrafastactivequenchingactiveresetcircuitwith50spadafterpulsingreductionina28nmfdsoicmostechnologyusingbodybiasingtechnique
AT calmonfrancis anultrafastactivequenchingactiveresetcircuitwith50spadafterpulsingreductionina28nmfdsoicmostechnologyusingbodybiasingtechnique
AT uhringwilfried anultrafastactivequenchingactiveresetcircuitwith50spadafterpulsingreductionina28nmfdsoicmostechnologyusingbodybiasingtechnique
AT dolatpoorlakehmohammadreza ultrafastactivequenchingactiveresetcircuitwith50spadafterpulsingreductionina28nmfdsoicmostechnologyusingbodybiasingtechnique
AT kammererjeanbaptiste ultrafastactivequenchingactiveresetcircuitwith50spadafterpulsingreductionina28nmfdsoicmostechnologyusingbodybiasingtechnique
AT aguenounonenagnon ultrafastactivequenchingactiveresetcircuitwith50spadafterpulsingreductionina28nmfdsoicmostechnologyusingbodybiasingtechnique
AT issarteldylan ultrafastactivequenchingactiveresetcircuitwith50spadafterpulsingreductionina28nmfdsoicmostechnologyusingbodybiasingtechnique
AT schelljeanbaptiste ultrafastactivequenchingactiveresetcircuitwith50spadafterpulsingreductionina28nmfdsoicmostechnologyusingbodybiasingtechnique
AT rinksven ultrafastactivequenchingactiveresetcircuitwith50spadafterpulsingreductionina28nmfdsoicmostechnologyusingbodybiasingtechnique
AT cathelinandreia ultrafastactivequenchingactiveresetcircuitwith50spadafterpulsingreductionina28nmfdsoicmostechnologyusingbodybiasingtechnique
AT calmonfrancis ultrafastactivequenchingactiveresetcircuitwith50spadafterpulsingreductionina28nmfdsoicmostechnologyusingbodybiasingtechnique
AT uhringwilfried ultrafastactivequenchingactiveresetcircuitwith50spadafterpulsingreductionina28nmfdsoicmostechnologyusingbodybiasingtechnique