Cargando…
Error Fusion of Hybrid Neural Networks for Mechanical Condition Dynamic Prediction
It is important for equipment to operate safely and reliably so that the working state of mechanical parts pushes forward an immense influence. Therefore, in order to enhance the dependability and security of mechanical equipment, to accurately predict the changing trend of mechanical components in...
Autores principales: | Zhang, Wentao, Liu, Yucheng, Zhang, Shaohui, Long, Tuzhi, Liang, Jinglun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230754/ https://www.ncbi.nlm.nih.gov/pubmed/34208262 http://dx.doi.org/10.3390/s21124043 |
Ejemplares similares
-
Hybrid Deep Recurrent Neural Networks for Noise Reduction of MEMS-IMU with Static and Dynamic Conditions
por: Han, Shipeng, et al.
Publicado: (2021) -
High-dimensional dynamics of generalization error in neural networks
por: Advani, Madhu S., et al.
Publicado: (2020) -
Piston Error Measurement for Segmented Telescopes Based on a Hybrid Artificial Neural Network
por: Yue, Dan, et al.
Publicado: (2023) -
The Path Planning of Mobile Robot by Neural Networks and Hierarchical Reinforcement Learning
por: Yu, Jinglun, et al.
Publicado: (2020) -
Reducing False-Positives in Lung Nodules Detection Using Balanced Datasets
por: Liang, Jinglun, et al.
Publicado: (2021)