Cargando…

Potential Contribution of Climate Change to the Protein Haze of White Wines from the French Southwest Region

The aim of this study was to evaluate the role played by climatic conditions during grape ripening in the protein instability of white wines produced in the French southwest region. For this purpose, basic wine analyses were carried out on 268 musts and the corresponding wines, all produced during t...

Descripción completa

Detalles Bibliográficos
Autores principales: Pasquier, Grégory, Feilhes, Carole, Dufourcq, Thierry, Geffroy, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230832/
https://www.ncbi.nlm.nih.gov/pubmed/34208203
http://dx.doi.org/10.3390/foods10061355
Descripción
Sumario:The aim of this study was to evaluate the role played by climatic conditions during grape ripening in the protein instability of white wines produced in the French southwest region. For this purpose, basic wine analyses were carried out on 268 musts and the corresponding wines, all produced during the 2016, 2017, 2018, and 2019 vintages, with distinctive climatic conditions. Qualitative and quantitative variables were correlated with levels of protein haze determined by heat test (80 °C/2 h) in the wines using analysis of covariance (ANCOVA), principal component analysis (PCA), and classification and regression trees (CART). Our results show that the climatic change, with the increase in temperatures, and the decrease in precipitation during the grape ripening phase, tends to enhance the risk of protein instability in wines. Indeed, the values of pH, titratable acidity, and malic acid concentrations of the musts, which are good indicators of the conditions in which the grapes ripened and of the level of ripeness of the grapes, were also the variables that correlated best with the protein haze. By measuring these parameters at harvest before alcoholic fermentation, it may be possible to predict the risk of protein haze, and thus early and precisely adapt the stabilization treatment to be applied.