Cargando…

High Performance Mixed-Matrix Electrospun Membranes for Ammonium Removal from Wastewaters

Mixed-matrix electrospun membranes were developed to investigate ammonium removal from low ammonium concentration wastewaters for the first time. Particles derived from the inexpensive zeolite 13X were successfully incorporated into polyethersulfone (PES) matrices. The fabricated mixed-matrix electr...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Shu-Ting, Wickramasinghe, Sumith Ranil, Qian, Xianghong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230858/
https://www.ncbi.nlm.nih.gov/pubmed/34208237
http://dx.doi.org/10.3390/membranes11060440
Descripción
Sumario:Mixed-matrix electrospun membranes were developed to investigate ammonium removal from low ammonium concentration wastewaters for the first time. Particles derived from the inexpensive zeolite 13X were successfully incorporated into polyethersulfone (PES) matrices. The fabricated mixed-matrix electrospun membranes demonstrate high ammonium removal capacity reaching over 55 mg/g(zeolite), more than 2.5 times higher than the previously fabricated mixed-matrix membranes via non-solvent induced phase inversion. Moreover, the membranes fabricated exhibit high permeability and ease of regeneration. Over 90% of total ammonium nitrogen (TAN) can be removed from low TAN wastewaters such as aquaculture wastewaters. In addition to zeolite 13X, other zeolite particles including zeolite Y, zeolite 3A and 4A were also incorporated into the membrane matrix. The inexpensive zeolite 13X show the highest ammonium exchange capacity. Particle type, loading and the level of its dispersion all affect TAN removal capacity.