Cargando…

Multiparametric Integrated (18)F-FDG PET/MRI-Based Radiomics for Breast Cancer Phenotyping and Tumor Decoding

SIMPLE SUMMARY: Breast cancer is considered the leading cancer type and main cause of cancer death in women. In this study, we assess simultaneous (18)F-FDG PET/MRI of the breast as a platform for comprehensive radiomics analysis for breast cancer subtype. The radiomics-based analysis comprised pred...

Descripción completa

Detalles Bibliográficos
Autores principales: Umutlu, Lale, Kirchner, Julian, Bruckmann, Nils Martin, Morawitz, Janna, Antoch, Gerald, Ingenwerth, Marc, Bittner, Ann-Kathrin, Hoffmann, Oliver, Haubold, Johannes, Grueneisen, Johannes, Quick, Harald H., Rischpler, Christoph, Herrmann, Ken, Gibbs, Peter, Pinker-Domenig, Katja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230865/
https://www.ncbi.nlm.nih.gov/pubmed/34208197
http://dx.doi.org/10.3390/cancers13122928
_version_ 1783713310958419968
author Umutlu, Lale
Kirchner, Julian
Bruckmann, Nils Martin
Morawitz, Janna
Antoch, Gerald
Ingenwerth, Marc
Bittner, Ann-Kathrin
Hoffmann, Oliver
Haubold, Johannes
Grueneisen, Johannes
Quick, Harald H.
Rischpler, Christoph
Herrmann, Ken
Gibbs, Peter
Pinker-Domenig, Katja
author_facet Umutlu, Lale
Kirchner, Julian
Bruckmann, Nils Martin
Morawitz, Janna
Antoch, Gerald
Ingenwerth, Marc
Bittner, Ann-Kathrin
Hoffmann, Oliver
Haubold, Johannes
Grueneisen, Johannes
Quick, Harald H.
Rischpler, Christoph
Herrmann, Ken
Gibbs, Peter
Pinker-Domenig, Katja
author_sort Umutlu, Lale
collection PubMed
description SIMPLE SUMMARY: Breast cancer is considered the leading cancer type and main cause of cancer death in women. In this study, we assess simultaneous (18)F-FDG PET/MRI of the breast as a platform for comprehensive radiomics analysis for breast cancer subtype. The radiomics-based analysis comprised prediction of molecular subtype, hormone receptor status, proliferation rate and lymphonodular and distant metastatic spread. Our results demonstrated high accuracy for multiparametric MRI alone as well as (18)F-FDG PET/MRI as an imaging platform for high-quality non-invasive tissue characterization. ABSTRACT: Background: This study investigated the performance of simultaneous (18)F-FDG PET/MRI of the breast as a platform for comprehensive radiomics analysis for breast cancer subtype analysis, hormone receptor status, proliferation rate and lymphonodular and distant metastatic spread. Methods: One hundred and twenty-four patients underwent simultaneous (18)F-FDG PET/MRI. Breast tumors were segmented and radiomic features were extracted utilizing CERR software following the IBSI guidelines. LASSO regression was employed to select the most important radiomics features prior to model development. Five-fold cross validation was then utilized alongside support vector machines, resulting in predictive models for various combinations of imaging data series. Results: The highest AUC and accuracy for differentiation between luminal A and B was achieved by all MR sequences (AUC 0.98; accuracy 97.3). The best results in AUC for prediction of hormone receptor status and proliferation rate were found based on all MR and PET data (ER AUC 0.87, PR AUC 0.88, Ki-67 AUC 0.997). PET provided the best determination of grading (AUC 0.71), while all MR and PET analyses yielded the best results for lymphonodular and distant metastatic spread (0.81 and 0.99, respectively). Conclusion: (18)F-FDG PET/MRI enables comprehensive high-quality radiomics analysis for breast cancer phenotyping and tumor decoding, utilizing the perks of simultaneously acquired morphologic, functional and metabolic data.
format Online
Article
Text
id pubmed-8230865
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-82308652021-06-26 Multiparametric Integrated (18)F-FDG PET/MRI-Based Radiomics for Breast Cancer Phenotyping and Tumor Decoding Umutlu, Lale Kirchner, Julian Bruckmann, Nils Martin Morawitz, Janna Antoch, Gerald Ingenwerth, Marc Bittner, Ann-Kathrin Hoffmann, Oliver Haubold, Johannes Grueneisen, Johannes Quick, Harald H. Rischpler, Christoph Herrmann, Ken Gibbs, Peter Pinker-Domenig, Katja Cancers (Basel) Article SIMPLE SUMMARY: Breast cancer is considered the leading cancer type and main cause of cancer death in women. In this study, we assess simultaneous (18)F-FDG PET/MRI of the breast as a platform for comprehensive radiomics analysis for breast cancer subtype. The radiomics-based analysis comprised prediction of molecular subtype, hormone receptor status, proliferation rate and lymphonodular and distant metastatic spread. Our results demonstrated high accuracy for multiparametric MRI alone as well as (18)F-FDG PET/MRI as an imaging platform for high-quality non-invasive tissue characterization. ABSTRACT: Background: This study investigated the performance of simultaneous (18)F-FDG PET/MRI of the breast as a platform for comprehensive radiomics analysis for breast cancer subtype analysis, hormone receptor status, proliferation rate and lymphonodular and distant metastatic spread. Methods: One hundred and twenty-four patients underwent simultaneous (18)F-FDG PET/MRI. Breast tumors were segmented and radiomic features were extracted utilizing CERR software following the IBSI guidelines. LASSO regression was employed to select the most important radiomics features prior to model development. Five-fold cross validation was then utilized alongside support vector machines, resulting in predictive models for various combinations of imaging data series. Results: The highest AUC and accuracy for differentiation between luminal A and B was achieved by all MR sequences (AUC 0.98; accuracy 97.3). The best results in AUC for prediction of hormone receptor status and proliferation rate were found based on all MR and PET data (ER AUC 0.87, PR AUC 0.88, Ki-67 AUC 0.997). PET provided the best determination of grading (AUC 0.71), while all MR and PET analyses yielded the best results for lymphonodular and distant metastatic spread (0.81 and 0.99, respectively). Conclusion: (18)F-FDG PET/MRI enables comprehensive high-quality radiomics analysis for breast cancer phenotyping and tumor decoding, utilizing the perks of simultaneously acquired morphologic, functional and metabolic data. MDPI 2021-06-11 /pmc/articles/PMC8230865/ /pubmed/34208197 http://dx.doi.org/10.3390/cancers13122928 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Umutlu, Lale
Kirchner, Julian
Bruckmann, Nils Martin
Morawitz, Janna
Antoch, Gerald
Ingenwerth, Marc
Bittner, Ann-Kathrin
Hoffmann, Oliver
Haubold, Johannes
Grueneisen, Johannes
Quick, Harald H.
Rischpler, Christoph
Herrmann, Ken
Gibbs, Peter
Pinker-Domenig, Katja
Multiparametric Integrated (18)F-FDG PET/MRI-Based Radiomics for Breast Cancer Phenotyping and Tumor Decoding
title Multiparametric Integrated (18)F-FDG PET/MRI-Based Radiomics for Breast Cancer Phenotyping and Tumor Decoding
title_full Multiparametric Integrated (18)F-FDG PET/MRI-Based Radiomics for Breast Cancer Phenotyping and Tumor Decoding
title_fullStr Multiparametric Integrated (18)F-FDG PET/MRI-Based Radiomics for Breast Cancer Phenotyping and Tumor Decoding
title_full_unstemmed Multiparametric Integrated (18)F-FDG PET/MRI-Based Radiomics for Breast Cancer Phenotyping and Tumor Decoding
title_short Multiparametric Integrated (18)F-FDG PET/MRI-Based Radiomics for Breast Cancer Phenotyping and Tumor Decoding
title_sort multiparametric integrated (18)f-fdg pet/mri-based radiomics for breast cancer phenotyping and tumor decoding
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230865/
https://www.ncbi.nlm.nih.gov/pubmed/34208197
http://dx.doi.org/10.3390/cancers13122928
work_keys_str_mv AT umutlulale multiparametricintegrated18ffdgpetmribasedradiomicsforbreastcancerphenotypingandtumordecoding
AT kirchnerjulian multiparametricintegrated18ffdgpetmribasedradiomicsforbreastcancerphenotypingandtumordecoding
AT bruckmannnilsmartin multiparametricintegrated18ffdgpetmribasedradiomicsforbreastcancerphenotypingandtumordecoding
AT morawitzjanna multiparametricintegrated18ffdgpetmribasedradiomicsforbreastcancerphenotypingandtumordecoding
AT antochgerald multiparametricintegrated18ffdgpetmribasedradiomicsforbreastcancerphenotypingandtumordecoding
AT ingenwerthmarc multiparametricintegrated18ffdgpetmribasedradiomicsforbreastcancerphenotypingandtumordecoding
AT bittnerannkathrin multiparametricintegrated18ffdgpetmribasedradiomicsforbreastcancerphenotypingandtumordecoding
AT hoffmannoliver multiparametricintegrated18ffdgpetmribasedradiomicsforbreastcancerphenotypingandtumordecoding
AT hauboldjohannes multiparametricintegrated18ffdgpetmribasedradiomicsforbreastcancerphenotypingandtumordecoding
AT grueneisenjohannes multiparametricintegrated18ffdgpetmribasedradiomicsforbreastcancerphenotypingandtumordecoding
AT quickharaldh multiparametricintegrated18ffdgpetmribasedradiomicsforbreastcancerphenotypingandtumordecoding
AT rischplerchristoph multiparametricintegrated18ffdgpetmribasedradiomicsforbreastcancerphenotypingandtumordecoding
AT herrmannken multiparametricintegrated18ffdgpetmribasedradiomicsforbreastcancerphenotypingandtumordecoding
AT gibbspeter multiparametricintegrated18ffdgpetmribasedradiomicsforbreastcancerphenotypingandtumordecoding
AT pinkerdomenigkatja multiparametricintegrated18ffdgpetmribasedradiomicsforbreastcancerphenotypingandtumordecoding