Cargando…
The Role of Microbial Products in Green Enhanced Oil Recovery: Acetone and Butanone
Green enhanced oil recovery is an oil recovery process involving the injection of specific environmentally friendly fluids (liquid chemicals and gases) that effectively displace oil due to their ability to alter the properties of enhanced oil recovery. In the microbial enhanced oil recovery (MEOR) p...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230878/ https://www.ncbi.nlm.nih.gov/pubmed/34208164 http://dx.doi.org/10.3390/polym13121946 |
Sumario: | Green enhanced oil recovery is an oil recovery process involving the injection of specific environmentally friendly fluids (liquid chemicals and gases) that effectively displace oil due to their ability to alter the properties of enhanced oil recovery. In the microbial enhanced oil recovery (MEOR) process, microbes produce products such as surfactants, polymers, ketones, alcohols, and gases. These products reduce interfacial tension and capillary force, increase viscosity and mobility, alter wettability, and boost oil production. The influence of ketones in green surfactant-polymer (SP) formulations is not yet well understood and requires further analysis. The work aims to examine acetone and butanone’s effectiveness in green SP formulations used in a sandstone reservoir. The manuscript consists of both laboratory experiments and simulations. The two microbial ketones examined in this work are acetone and butanone. A spinning drop tensiometer was utilized to determine the interfacial tension (IFT) values for the selected formulations. Viscosity and shear rate across a wide range of temperatures were measured via a Discovery hybrid rheometer. Two core flood experiments were then conducted using sandstone cores at reservoir temperature and pressure. The two formulations selected were an acetone and SP blend and a butanone and SP mixture. These were chosen based on their IFT reduction and viscosity enhancement capabilities for core flooding, both important in assessing a sandstone core’s oil recovery potential. In the first formulation, acetone was mixed with alkyl polyglucoside (APG), a non-ionic green surfactant, and the biopolymer Xanthan gum (XG). This formulation produced 32% tertiary oil in the sandstone core. In addition, the acetone and SP formulation was effective at recovering residual oil from the core. In the second formulation, butanone was blended with APG and XG; the formulation recovered about 25% residual oil from the sandstone core. A modified Eclipse simulator was utilized to simulate the acetone and SP core-flood experiment and examine the effects of surfactant adsorption on oil recovery. The simulated oil recovery curve matched well with the laboratory values. In the sensitivity analysis, it was found that oil recovery decreased as the adsorption values increased. |
---|