Cargando…
Impact of COVID-19 pandemic on low-carbon shared traffic scheduling under machine learning model
The present work aims to expand the application of machine learning models in predicting and identifying traffic flow data and provide a reference for the scheduling and management of shared traffic against the Coronavirus Disease 2019 (COVID-19) pandemic. First, a time segmentation-based prediction...
Autores principales: | Liu, Xin, Li, Shunlong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer India
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231089/ http://dx.doi.org/10.1007/s13198-021-01176-x |
Ejemplares similares
-
Learning Mixed Traffic Signatures in Shared Networks
por: Anvari, Hamidreza, et al.
Publicado: (2020) -
Low-cost UAV detection via WiFi traffic analysis and machine learning
por: Bi, Longtao, et al.
Publicado: (2023) -
A Proposed Machine Learning Model for Forecasting Impact of Traffic-Induced Vibrations on Buildings
por: Jakubczyk-Gałczyńska, Anna, et al.
Publicado: (2020) -
Multiservice-Based Traffic Scheduling for 5G Access Traffic Steering, Switching and Splitting
por: Ba, Xinran, et al.
Publicado: (2022) -
Data Center Traffic Prediction Algorithms and Resource Scheduling
por: Tan, Min, et al.
Publicado: (2022)