Cargando…

Transendothelial Electrical Resistance Measurement across the Blood–Brain Barrier: A Critical Review of Methods

The blood–brain barrier (BBB) represents the tightest endothelial barrier within the cardiovascular system characterized by very low ionic permeability. Our aim was to describe the setups, electrodes, and instruments to measure electrical resistance across brain microvessels and culture models of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Vigh, Judit P., Kincses, András, Ozgür, Burak, Walter, Fruzsina R., Santa-Maria, Ana Raquel, Valkai, Sándor, Vastag, Mónika, Neuhaus, Winfried, Brodin, Birger, Dér, András, Deli, Mária A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231150/
https://www.ncbi.nlm.nih.gov/pubmed/34208338
http://dx.doi.org/10.3390/mi12060685
_version_ 1783713364187283456
author Vigh, Judit P.
Kincses, András
Ozgür, Burak
Walter, Fruzsina R.
Santa-Maria, Ana Raquel
Valkai, Sándor
Vastag, Mónika
Neuhaus, Winfried
Brodin, Birger
Dér, András
Deli, Mária A.
author_facet Vigh, Judit P.
Kincses, András
Ozgür, Burak
Walter, Fruzsina R.
Santa-Maria, Ana Raquel
Valkai, Sándor
Vastag, Mónika
Neuhaus, Winfried
Brodin, Birger
Dér, András
Deli, Mária A.
author_sort Vigh, Judit P.
collection PubMed
description The blood–brain barrier (BBB) represents the tightest endothelial barrier within the cardiovascular system characterized by very low ionic permeability. Our aim was to describe the setups, electrodes, and instruments to measure electrical resistance across brain microvessels and culture models of the BBB, as well as critically assess the influence of often neglected physical and technical parameters such as temperature, viscosity, current density generated by different electrode types, surface size, circumference, and porosity of the culture insert membrane. We demonstrate that these physical and technical parameters greatly influence the measurement of transendothelial electrical resistance/resistivity (TEER) across BBB culture models resulting in severalfold differences in TEER values of the same biological model, especially in the low-TEER range. We show that elevated culture medium viscosity significantly increases, while higher membrane porosity decreases TEER values. TEER data measured by chopstick electrodes can be threefold higher than values measured by chamber electrodes due to different electrode size and geometry, resulting in current distribution inhomogeneity. An additional shunt resistance at the circumference of culture inserts results in lower TEER values. A detailed description of setups and technical parameters is crucial for the correct interpretation and comparison of TEER values of BBB models.
format Online
Article
Text
id pubmed-8231150
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-82311502021-06-26 Transendothelial Electrical Resistance Measurement across the Blood–Brain Barrier: A Critical Review of Methods Vigh, Judit P. Kincses, András Ozgür, Burak Walter, Fruzsina R. Santa-Maria, Ana Raquel Valkai, Sándor Vastag, Mónika Neuhaus, Winfried Brodin, Birger Dér, András Deli, Mária A. Micromachines (Basel) Review The blood–brain barrier (BBB) represents the tightest endothelial barrier within the cardiovascular system characterized by very low ionic permeability. Our aim was to describe the setups, electrodes, and instruments to measure electrical resistance across brain microvessels and culture models of the BBB, as well as critically assess the influence of often neglected physical and technical parameters such as temperature, viscosity, current density generated by different electrode types, surface size, circumference, and porosity of the culture insert membrane. We demonstrate that these physical and technical parameters greatly influence the measurement of transendothelial electrical resistance/resistivity (TEER) across BBB culture models resulting in severalfold differences in TEER values of the same biological model, especially in the low-TEER range. We show that elevated culture medium viscosity significantly increases, while higher membrane porosity decreases TEER values. TEER data measured by chopstick electrodes can be threefold higher than values measured by chamber electrodes due to different electrode size and geometry, resulting in current distribution inhomogeneity. An additional shunt resistance at the circumference of culture inserts results in lower TEER values. A detailed description of setups and technical parameters is crucial for the correct interpretation and comparison of TEER values of BBB models. MDPI 2021-06-11 /pmc/articles/PMC8231150/ /pubmed/34208338 http://dx.doi.org/10.3390/mi12060685 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Vigh, Judit P.
Kincses, András
Ozgür, Burak
Walter, Fruzsina R.
Santa-Maria, Ana Raquel
Valkai, Sándor
Vastag, Mónika
Neuhaus, Winfried
Brodin, Birger
Dér, András
Deli, Mária A.
Transendothelial Electrical Resistance Measurement across the Blood–Brain Barrier: A Critical Review of Methods
title Transendothelial Electrical Resistance Measurement across the Blood–Brain Barrier: A Critical Review of Methods
title_full Transendothelial Electrical Resistance Measurement across the Blood–Brain Barrier: A Critical Review of Methods
title_fullStr Transendothelial Electrical Resistance Measurement across the Blood–Brain Barrier: A Critical Review of Methods
title_full_unstemmed Transendothelial Electrical Resistance Measurement across the Blood–Brain Barrier: A Critical Review of Methods
title_short Transendothelial Electrical Resistance Measurement across the Blood–Brain Barrier: A Critical Review of Methods
title_sort transendothelial electrical resistance measurement across the blood–brain barrier: a critical review of methods
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231150/
https://www.ncbi.nlm.nih.gov/pubmed/34208338
http://dx.doi.org/10.3390/mi12060685
work_keys_str_mv AT vighjuditp transendothelialelectricalresistancemeasurementacrossthebloodbrainbarrieracriticalreviewofmethods
AT kincsesandras transendothelialelectricalresistancemeasurementacrossthebloodbrainbarrieracriticalreviewofmethods
AT ozgurburak transendothelialelectricalresistancemeasurementacrossthebloodbrainbarrieracriticalreviewofmethods
AT walterfruzsinar transendothelialelectricalresistancemeasurementacrossthebloodbrainbarrieracriticalreviewofmethods
AT santamariaanaraquel transendothelialelectricalresistancemeasurementacrossthebloodbrainbarrieracriticalreviewofmethods
AT valkaisandor transendothelialelectricalresistancemeasurementacrossthebloodbrainbarrieracriticalreviewofmethods
AT vastagmonika transendothelialelectricalresistancemeasurementacrossthebloodbrainbarrieracriticalreviewofmethods
AT neuhauswinfried transendothelialelectricalresistancemeasurementacrossthebloodbrainbarrieracriticalreviewofmethods
AT brodinbirger transendothelialelectricalresistancemeasurementacrossthebloodbrainbarrieracriticalreviewofmethods
AT derandras transendothelialelectricalresistancemeasurementacrossthebloodbrainbarrieracriticalreviewofmethods
AT delimariaa transendothelialelectricalresistancemeasurementacrossthebloodbrainbarrieracriticalreviewofmethods