Cargando…
Deep-Framework: A Distributed, Scalable, and Edge-Oriented Framework for Real-Time Analysis of Video Streams
Edge computing is the best approach for meeting the exponential demand and the real-time requirements of many video analytics applications. Since most of the recent advances regarding the extraction of information from images and video rely on computation heavy deep learning algorithms, there is a g...
Autores principales: | Sassu, Alessandro, Saenz-Cogollo, Jose Francisco, Agelli, Maurizio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231160/ https://www.ncbi.nlm.nih.gov/pubmed/34208327 http://dx.doi.org/10.3390/s21124045 |
Ejemplares similares
-
Scalable video streaming with fountain codes
por: Nazir, Sajid
Publicado: (2016) -
MDED-Framework: A Distributed Microservice Deep-Learning Framework for Object Detection in Edge Computing
por: Seo, Jihyun, et al.
Publicado: (2023) -
Resource-aware video streaming (RAViS) framework for object detection system using deep learning algorithm
por: Shiddiqi, Ary Mazharuddin, et al.
Publicado: (2023) -
Deep learning at the edge enables real-time streaming ptychographic imaging
por: Babu, Anakha V., et al.
Publicado: (2023) -
Where There Is Fire There Is SMOKE: A Scalable Edge Computing Framework for Early Fire Detection
por: Avgeris, Marios, et al.
Publicado: (2019)