Cargando…
A Nonlinear Maximum Correntropy Information Filter for High-Dimensional Neural Decoding
Neural signal decoding is a critical technology in brain machine interface (BMI) to interpret movement intention from multi-neural activity collected from paralyzed patients. As a commonly-used decoding algorithm, the Kalman filter is often applied to derive the movement states from high-dimensional...
Autores principales: | Liu, Xi, Chen, Shuhang, Shen, Xiang, Zhang, Xiang, Wang, Yiwen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231488/ https://www.ncbi.nlm.nih.gov/pubmed/34204814 http://dx.doi.org/10.3390/e23060743 |
Ejemplares similares
-
Partial maximum correntropy regression for robust electrocorticography decoding
por: Li, Yuanhao, et al.
Publicado: (2023) -
Student’s t-Kernel-Based Maximum Correntropy Kalman Filter
por: Huang, Hongliang, et al.
Publicado: (2022) -
Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation
por: Liu, Xi, et al.
Publicado: (2016) -
Adaptive Maximum Correntropy Gaussian Filter Based on Variational Bayes
por: Wang, Guoqing, et al.
Publicado: (2018) -
Newtonian-Type Adaptive Filtering Based on the Maximum Correntropy Criterion
por: Yue, Pengcheng, et al.
Publicado: (2020)