Cargando…
An Explainable AI-Based Fault Diagnosis Model for Bearings
In this paper, an explainable AI-based fault diagnosis model for bearings is proposed with five stages, i.e., (1) a data preprocessing method based on the Stockwell Transformation Coefficient (STC) is proposed to analyze the vibration signals for variable speed and load conditions, (2) a statistical...
Autores principales: | Hasan, Md Junayed, Sohaib, Muhammad, Kim, Jong-Myon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231543/ https://www.ncbi.nlm.nih.gov/pubmed/34199163 http://dx.doi.org/10.3390/s21124070 |
Ejemplares similares
-
Bearing Fault Diagnosis Using Multidomain Fusion-Based Vibration Imaging and Multitask Learning
por: Hasan, Md Junayed, et al.
Publicado: (2021) -
A Multitask-Aided Transfer Learning-Based Diagnostic Framework for Bearings under Inconsistent Working Conditions
por: Hasan, Md Junayed, et al.
Publicado: (2020) -
A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis
por: Sohaib, Muhammad, et al.
Publicado: (2017) -
Novel Bearing Fault Diagnosis Using Gaussian Mixture Model-Based Fault Band Selection
por: Maliuk, Andrei S., et al.
Publicado: (2021) -
Bearing Fault Diagnosis Using a Hybrid Fuzzy V-Structure Fault Estimator Scheme
por: Piltan, Farzin, et al.
Publicado: (2023)