Cargando…

Manufacturing Elements with Small Cross-Sections of 17-4 PH Steel (1.4542) with the Application of the DMLS Additive Manufacturing Method

The application of direct metal laser sintering renders it possible to manufacture models with complex geometries. However, there are certain limits to the application of this method connected with manufacturing thin-walled cuboidal elements, as well as cylinders and holes with small diameters. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Budzik, Grzegorz, Przeszłowski, Łukasz, Dziubek, Tomasz, Gontarz, Małgorzata, Dębski, Mariusz, Smyk, Emil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231573/
https://www.ncbi.nlm.nih.gov/pubmed/34204739
http://dx.doi.org/10.3390/ma14123256
Descripción
Sumario:The application of direct metal laser sintering renders it possible to manufacture models with complex geometries. However, there are certain limits to the application of this method connected with manufacturing thin-walled cuboidal elements, as well as cylinders and holes with small diameters. The principal objective of the research was to determine the accuracy of manufacturing geometries with small cross-sections and the possibility of application in heat exchangers that are radiators with radially arranged ribs. To that end, four specimens were designed and manufactured; their geometries of representations assumed for the purpose of research (analysis) changed dimensions within the following scope: 10–0.1 mm. The specimens to be applied in the research were manufactured with 17-4 PH stainless steel (1.4542) with the application of 3D-DMLS printing and an EOS M270 printer. The measurement of accuracy was performed with the application of an optical stereomicroscope (KERN OZL-466). In addition to that, research into the chemical composition of the material, as well as the size of spherical agglomerates, was conducted with the application of a scanning electron microscope. The analysis of the chemical composition was conducted as well (after the sintering process). The analysis of the results based on the values received by means of measurements of the manufactured geometries was divided into three parts. Based on this, it is possible to conclude that the representation of models manufactured with the application of DMLS was comparable with the assumptions, and that the deviations between a nominal dimension and that received in the course of the research were within the following scope: 0–0.1 mm. At the final stage of research and based on the received results, two heat exchangers were manufactured.