Cargando…
HyAdamC: A New Adam-Based Hybrid Optimization Algorithm for Convolution Neural Networks
As the performance of devices that conduct large-scale computations has been rapidly improved, various deep learning models have been successfully utilized in various applications. Particularly, convolution neural networks (CNN) have shown remarkable performance in image processing tasks such as ima...
Autores principales: | Kim, Kyung-Soo, Choi, Yong-Suk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231656/ https://www.ncbi.nlm.nih.gov/pubmed/34204695 http://dx.doi.org/10.3390/s21124054 |
Ejemplares similares
-
Facial Expressions Recognition for Human–Robot Interaction Using Deep Convolutional Neural Networks with Rectified Adam Optimizer
por: Melinte, Daniel Octavian, et al.
Publicado: (2020) -
Adam and the Ants: On the Influence of the Optimization Algorithm on the Detectability of DNN Watermarks
por: Cortiñas-Lorenzo, Betty, et al.
Publicado: (2020) -
An Exploration of the Neural Network of Lance-Adams Syndrome: a Case Report
por: Song, Jimin, et al.
Publicado: (2020) -
Adam
Publicado: (1880) -
LGI1 and LGI4 bind to ADAM22, ADAM23 and ADAM11
por: Sagane, Koji, et al.
Publicado: (2008)