Cargando…

Engineered Microvessel for Cell Culture in Simulated Microgravity

As the number of manned space flights increase, studies on the effects of microgravity on the human body are becoming more important. Due to the high expense and complexity of sending samples into space, simulated microgravity platforms have become a popular way to study these effects on earth. In a...

Descripción completa

Detalles Bibliográficos
Autores principales: ElGindi, Mei, Ibrahim, Ibrahim Hamed, Sapudom, Jiranuwat, Garcia-Sabate, Anna, Teo, Jeremy C.M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231837/
https://www.ncbi.nlm.nih.gov/pubmed/34199262
http://dx.doi.org/10.3390/ijms22126331
Descripción
Sumario:As the number of manned space flights increase, studies on the effects of microgravity on the human body are becoming more important. Due to the high expense and complexity of sending samples into space, simulated microgravity platforms have become a popular way to study these effects on earth. In addition, simulated microgravity has recently drawn the attention of regenerative medicine by increasing cell differentiation capability. These platforms come with many advantages as well as limitations. A main limitation for usage of these platforms is the lack of high-throughput capability due to the use of large cell culture vessels. Therefore, there is a requirement for microvessels for microgravity platforms that limit waste and increase throughput. In this work, a microvessel for commercial cell culture plates was designed. Four 3D printable (polycarbonate (PC), polylactic acid (PLA) and resin) and castable (polydimethylsiloxane (PDMS)) materials were assessed for biocompatibility with adherent and suspension cell types. PDMS was found to be the most suitable material for microvessel fabrication, long-term cell viability and proliferation. It also allows for efficient gas exchange, has no effect on cell culture media pH and does not induce hypoxic conditions. Overall, the designed microvessel can be used on simulated microgravity platforms as a method for long-term high-throughput biomedical studies.