Cargando…
Data Clustering Using Moth-Flame Optimization Algorithm
A k-means algorithm is a method for clustering that has already gained a wide range of acceptability. However, its performance extremely depends on the opening cluster centers. Besides, due to weak exploration capability, it is easily stuck at local optima. Recently, a new metaheuristic called Moth...
Autores principales: | Singh, Tribhuvan, Saxena, Nitin, Khurana, Manju, Singh, Dilbag, Abdalla, Mohamed, Alshazly, Hammam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231885/ https://www.ncbi.nlm.nih.gov/pubmed/34198501 http://dx.doi.org/10.3390/s21124086 |
Ejemplares similares
-
COVID-19 classification using chest X-ray images: A framework of CNN-LSTM and improved max value moth flame optimization
por: Hamza, Ameer, et al.
Publicado: (2022) -
Quantum-Inspired Moth-Flame Optimizer With Enhanced Local Search Strategy for Cluster Analysis
por: Cui, Xinrong, et al.
Publicado: (2022) -
Invocations ; The moth and the flame
por: Jarrett, Keith
Publicado: (1987) -
A new technique for influence maximization on social networks using a moth-flame optimization algorithm
por: Cui, Qi, et al.
Publicado: (2023) -
Moth Flame Optimization: Theory, Modifications, Hybridizations, and Applications
por: Sahoo, Saroj Kumar, et al.
Publicado: (2022)