Cargando…

Contrasting Genetic Footprints among Saharan Olive Populations: Potential Causes and Conservation Implications

The Laperrine’s olive is endemic to the Saharan Mountains. Adapted to arid environments, it may constitute a valuable genetic resource to improve water-stress tolerance in the cultivated olive. However, limited natural regeneration coupled with human pressures make it locally endangered in Central S...

Descripción completa

Detalles Bibliográficos
Autores principales: Besnard, Guillaume, Gorrilliot, Océane, Raimondeau, Pauline, Génot, Benoit, El Bakkali, Ahmed, Anthelme, Fabien, Baali-Cherif, Djamel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231981/
https://www.ncbi.nlm.nih.gov/pubmed/34198539
http://dx.doi.org/10.3390/plants10061207
Descripción
Sumario:The Laperrine’s olive is endemic to the Saharan Mountains. Adapted to arid environments, it may constitute a valuable genetic resource to improve water-stress tolerance in the cultivated olive. However, limited natural regeneration coupled with human pressures make it locally endangered in Central Sahara. Understanding past population dynamics is thus crucial to define management strategies. Nucleotide sequence diversity was first investigated on five nuclear genes and compared to the Mediterranean and African olives. These data confirm that the Laperrine’s olive has a strong affinity with the Mediterranean olive, but it shows lower nucleotide diversity than other continental taxa. To investigate gene flows mediated by seeds and pollen, polymorphisms from nuclear and plastid microsatellites from 383 individuals from four Saharan massifs were analyzed. A higher genetic diversity in Ahaggar (Hoggar, Algeria) suggests that this population has maintained over the long term a larger number of individuals than other massifs. High-to-moderate genetic differentiation between massifs confirms the role of desert barriers in limiting gene flow. Yet contrasting patterns of isolation by distance were observed within massifs, and also between plastid and nuclear markers, stressing the role of local factors (e.g., habitat fragmentation, historical range shift) in seed and pollen dispersal. Implications of these results in the management of the Laperrine’s olive genetic resources are discussed.