Cargando…
Transmission Quality Classification with Use of Fusion of Neural Network and Genetic Algorithm in Pay&Require Multi-Agent Managed Network
Modern computer systems practically cannot function without a computer network. New concepts of data transmission are emerging, e.g., programmable networks. However, the development of computer networks entails the need for development in one more aspect, i.e., the quality of the data transmission t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231990/ https://www.ncbi.nlm.nih.gov/pubmed/34198587 http://dx.doi.org/10.3390/s21124090 |
Sumario: | Modern computer systems practically cannot function without a computer network. New concepts of data transmission are emerging, e.g., programmable networks. However, the development of computer networks entails the need for development in one more aspect, i.e., the quality of the data transmission through the network. The data transmission quality can be described using parameters, i.e., delay, bandwidth, packet loss ratio and jitter. On the basis of the obtained values, specialists are able to state how measured parameters impact on the overall quality of the provided service. Unfortunately, for a non-expert user, understanding of these parameters can be too complex. Hence, the problem of translation of the parameters describing the transmission quality appears understandable to the user. This article presents the concept of using Machine Learning (ML) to solve the above-mentioned problem, i.e., a dynamic classification of the measured parameters describing the transmission quality in a certain scale. Thanks to this approach, describing the quality will become less complex and more understandable for the user. To date, some studies have been conducted. Therefore, it was decided to use different approaches, i.e., fusion of a neural network (NN) and a genetic algorithm (GA). GA’s were choosen for the selection of weights replacing the classic gradient descent algorithm. For learning purposes, 100 samples were obtained, each of which was described by four features and the label, which describes the quality. In the reasearch carried out so far, single classifiers and ensemble learning have been used. The current result compared to the previous ones is better. A relatively high quality of the classification was obtained when we have used 10-fold stratified cross-validation, i.e., SEN = 95% (overall accuracy). The incorrect classification was 5/100, which is a better result compared to previous studies. |
---|