Cargando…

An Improvement of SPME-Based Sampling Technique to Collect Volatile Organic Compounds from Quercus ilex at the Environmental Level

Biogenic Volatile Organic Compounds (BVOCs) include many chemical compounds emitted by plants into the atmosphere. These compounds have a great effect on biosphere–atmosphere interactions and may affect the concentration of atmospheric pollutants, with further consequences on human health and forest...

Descripción completa

Detalles Bibliográficos
Autores principales: Pasquini, Dalila, Gori, Antonella, Ferrini, Francesco, Brunetti, Cecilia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232123/
https://www.ncbi.nlm.nih.gov/pubmed/34198607
http://dx.doi.org/10.3390/metabo11060388
Descripción
Sumario:Biogenic Volatile Organic Compounds (BVOCs) include many chemical compounds emitted by plants into the atmosphere. These compounds have a great effect on biosphere–atmosphere interactions and may affect the concentration of atmospheric pollutants, with further consequences on human health and forest ecosystems. Novel methods to measure and determine BVOCs in the atmosphere are of compelling importance considering the ongoing climate changes. In this study, we developed a fast and easy-to-handle analytical methodology to sample these compounds in field experiments using solid-phase microextraction (SPME) fibers at the atmospheric level. An improvement of BVOCs adsorption from SPME fibers was obtained by coupling the fibers with fans to create a dynamic sampling system. This innovative technique was tested sampling Q. ilex BVOCs in field conditions in comparison with the conventional static SPME sampling technique. The results showed a great potential of this dynamic sampling system to collect BVOCs at the atmosphere level, improving the efficiency and sensitivity of SPME fibers. Indeed, our novel device was able to reduce the sampling time, increase the amount of BVOCs collected through the fibers and add information regarding the emissions of these compounds at the environmental level.