Cargando…
Optimization of End-to-End Convolutional Neural Networks for Analysis of Out-of-Hospital Cardiac Arrest Rhythms during Cardiopulmonary Resuscitation
High performance of the shock advisory analysis of the electrocardiogram (ECG) during cardiopulmonary resuscitation (CPR) in out-of-hospital cardiac arrest (OHCA) is important for better management of the resuscitation protocol. It should provide fewer interruptions of chest compressions (CC) for no...
Autores principales: | Jekova, Irena, Krasteva, Vessela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232133/ https://www.ncbi.nlm.nih.gov/pubmed/34203701 http://dx.doi.org/10.3390/s21124105 |
Ejemplares similares
-
Fully Convolutional Deep Neural Networks with Optimized Hyperparameters for Detection of Shockable and Non-Shockable Rhythms
por: Krasteva, Vessela, et al.
Publicado: (2020) -
Deep Learning Strategy for Sliding ECG Analysis during Cardiopulmonary Resuscitation: Influence of the Hands-Off Time on Accuracy
por: Krasteva, Vessela, et al.
Publicado: (2023) -
Atrioventricular Synchronization for Detection of Atrial Fibrillation and Flutter in One to Twelve ECG Leads Using a Dense Neural Network Classifier
por: Jekova, Irena, et al.
Publicado: (2022) -
Rhythm Analysis during Cardiopulmonary Resuscitation Using Convolutional Neural Networks
por: Isasi, Iraia, et al.
Publicado: (2020) -
Extracorporeal Cardiopulmonary Resuscitation for an Out-of-Hospital Cardiac Arrest
por: Nair, Suresh G., et al.
Publicado: (2022)