Cargando…
Feature Ranking and Screening for Class-Imbalanced Metabolomics Data Based on Rank Aggregation Coupled with Re-Balance
Feature screening is an important and challenging topic in current class-imbalance learning. Most of the existing feature screening algorithms in class-imbalance learning are based on filtering techniques. However, the variable rankings obtained by various filtering techniques are generally differen...
Autores principales: | Fu, Guang-Hui, Wang, Jia-Bao, Zong, Min-Jie, Yi, Lun-Zhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232202/ https://www.ncbi.nlm.nih.gov/pubmed/34198638 http://dx.doi.org/10.3390/metabo11060389 |
Ejemplares similares
-
RankAggreg, an R package for weighted rank aggregation
por: Pihur, Vasyl, et al.
Publicado: (2009) -
Feature ranking and rank aggregation for automatic sleep stage classification: a comparative study
por: Najdi, Shirin, et al.
Publicado: (2017) -
Network tuned multiple rank aggregation and applications to gene ranking
por: Wang, Wenhui, et al.
Publicado: (2015) -
DRIMust: a web server for discovering rank imbalanced motifs using suffix trees
por: Leibovich, Limor, et al.
Publicado: (2013) -
Hellinger distance-based stable sparse feature selection for high-dimensional class-imbalanced data
por: Fu, Guang-Hui, et al.
Publicado: (2020)