Cargando…

Cu Patterning Using Femtosecond Laser Reductive Sintering of CuO Nanoparticles under Inert Gas Injection

In this paper, we report the effect of inert gas injection on Cu patterning generated by femtosecond laser reductive sintering of CuO nanoparticles (NPs). Femtosecond laser reductive sintering for metal patterning has been restricted to metal and metal-oxide composite materials. By irradiating CuO-n...

Descripción completa

Detalles Bibliográficos
Autores principales: Mizoshiri, Mizue, Yoshidomi, Kyohei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232264/
https://www.ncbi.nlm.nih.gov/pubmed/34198689
http://dx.doi.org/10.3390/ma14123285
Descripción
Sumario:In this paper, we report the effect of inert gas injection on Cu patterning generated by femtosecond laser reductive sintering of CuO nanoparticles (NPs). Femtosecond laser reductive sintering for metal patterning has been restricted to metal and metal-oxide composite materials. By irradiating CuO-nanoparticle paste with femtosecond laser pulses under inert gas injection, we intended to reduce the generation of metal oxides in the formed patterns. In an experimental evaluation, the X-ray diffraction peaks corresponding to copper oxides, such as CuO and Cu(2)O, were much smaller under N(2) and Ar gas injections than under air injection. Increasing the injection rates of both gases increased the reduction degree of the X-ray diffraction peaks of the CuO NPs, but excessively high injection rates (≥100 mL/min) significantly decreased the surface density of the patterns. These results qualitatively agreed with the ratio of sintered/melted area. The femtosecond laser reductive sintering under inert gas injection achieved a vacuum-free direct writing of metal patterns.