Cargando…
Sensor and Actuator Fault Diagnosis for Robot Joint Based on Deep CNN
This paper proposes a data-driven method-based fault diagnosis method using the deep convolutional neural network (DCNN). The DCNN is used to deal with sensor and actuator faults of robot joints, such as gain error, offset error, and malfunction for both sensors and actuators, and different fault ty...
Autores principales: | Pan, Jinghui, Qu, Lili, Peng, Kaixiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232324/ https://www.ncbi.nlm.nih.gov/pubmed/34203708 http://dx.doi.org/10.3390/e23060751 |
Ejemplares similares
-
Deep residual neural-network-based robot joint fault diagnosis method
por: Pan, Jinghui, et al.
Publicado: (2022) -
Design of Fault Prediction System for Electromechanical Sensor Equipment Based on Deep Learning
por: Ding, Yongtao, et al.
Publicado: (2022) -
Adaptive Observer Based Fault Tolerant Control for Sensor and Actuator Faults in Wind Turbines
por: Teng, Jing, et al.
Publicado: (2021) -
Application of CNN-Based Machine Learning in the Study of Motor Fault Diagnosis
por: Peng, Xiuyan, et al.
Publicado: (2022) -
Fault-tolerant attitude control of the satellite in the presence of simultaneous actuator and sensor faults
por: Fazlyab, Ali Reza, et al.
Publicado: (2023)