Cargando…
Harnessing clinical annotations to improve deep learning performance in prostate segmentation
PURPOSE: Developing large-scale datasets with research-quality annotations is challenging due to the high cost of refining clinically generated markup into high precision annotations. We evaluated the direct use of a large dataset with only clinically generated annotations in development of high-per...
Autores principales: | Sarma, Karthik V., Raman, Alex G., Dhinagar, Nikhil J., Priester, Alan M., Harmon, Stephanie, Sanford, Thomas, Mehralivand, Sherif, Turkbey, Baris, Marks, Leonard S., Raman, Steven S., Speier, William, Arnold, Corey W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232529/ https://www.ncbi.nlm.nih.gov/pubmed/34170972 http://dx.doi.org/10.1371/journal.pone.0253829 |
Ejemplares similares
-
Federated learning improves site performance in multicenter deep learning without data sharing
por: Sarma, Karthik V, et al.
Publicado: (2021) -
Quick guide on radiology image pre-processing for deep learning applications in prostate cancer research
por: Masoudi, Samira, et al.
Publicado: (2021) -
Sentinel lymph node imaging in urologic oncology
por: Mehralivand, Sherif, et al.
Publicado: (2018) -
Comparison of cross-sectional imaging techniques for the detection of prostate cancer lymph node metastasis: a critical review
por: Lebastchi, Amir H., et al.
Publicado: (2020) -
Modelling microbial communities: Harnessing consortia for biotechnological applications
por: Ibrahim, Maziya, et al.
Publicado: (2021)