Cargando…
Model order reduction of flow based on a modular geometrical approximation of blood vessels
We are interested in a reduced order method for the efficient simulation of blood flow in arteries. The blood dynamics is modeled by means of the incompressible Navier–Stokes equations. Our algorithm is based on an approximated domain-decomposition of the target geometry into a number of subdomains...
Autores principales: | Pegolotti, Luca, Pfaller, Martin R., Marsden, Alison L., Deparis, Simone |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232546/ https://www.ncbi.nlm.nih.gov/pubmed/34176992 http://dx.doi.org/10.1016/j.cma.2021.113762 |
Ejemplares similares
-
Implementation and Calibration of a Deep Neural Network to Predict Parameters of Left Ventricular Systolic Function Based on Pulmonary and Systemic Arterial Pressure Signals
por: Bonnemain, Jean, et al.
Publicado: (2020) -
Deep Neural Network to Accurately Predict Left Ventricular Systolic Function Under Mechanical Assistance
por: Bonnemain, Jean, et al.
Publicado: (2021) -
Geometric approximation algorithms
por: Har-Peled, Sariel
Publicado: (2011) -
GraXML - Modular Geometric Modeler
por: Hrivnác, J
Publicado: (2003) -
Geometrical methods in congruence modular algebras
por: Gumm, H Peter
Publicado: (1983)