Cargando…

Aminophosphonates in Nanofiltration and Reverse Osmosis Permeates

Aminophosphonates such as aminotris(methylenephosphonic acid) (ATMP) are common constituents of antiscalants. In nanofiltration (NF) and reverse osmosis (RO) processes, ATMP prevents inorganic scaling leading to more stable membrane performance. So far, little attention has been paid to the possible...

Descripción completa

Detalles Bibliográficos
Autores principales: Kuhn, Ramona, Vornholt, Carsten, Preuß, Volker, Bryant, Isaac Mbir, Martienssen, Marion
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232610/
https://www.ncbi.nlm.nih.gov/pubmed/34203777
http://dx.doi.org/10.3390/membranes11060446
Descripción
Sumario:Aminophosphonates such as aminotris(methylenephosphonic acid) (ATMP) are common constituents of antiscalants. In nanofiltration (NF) and reverse osmosis (RO) processes, ATMP prevents inorganic scaling leading to more stable membrane performance. So far, little attention has been paid to the possible permeation of aminophosphonates through NF and RO membranes. We have investigated the permeability of these membrane types for ATMP and its potential metabolites iminodi(methylenephosphonic acid) (IDMP) and amino(methylenephosphonic acid) (AMPA) with two different NF membranes (TS40 and TS80) and one RO membrane (ACM2) and three different water compositions (ultra-pure water, synthetic tap water and local tap water). We found traces of phosphonates in all investigated permeates. The highest phosphonate rejection occurred with local tap water for all three membranes investigated. Filtration experiments with a technical antiscalant formulation containing ATMP indicated similar trends of phosphonate permeability through all three membranes. We assume that the separation mechanisms of the membranes are the results of a very complex relationship between physico-chemical properties such as Donnan exclusion, feed pH, feed ionic strength and feed concentration, as well as solute–solute interactions.