Cargando…
Spatial Domain Terahertz Image Reconstruction Based on Dual Sparsity Constraints
Terahertz time domain spectroscopy imaging systems suffer from the problems of long image acquisition time and massive data processing. Reducing the sampling rate will lead to the degradation of the imaging reconstruction quality. To solve this issue, a novel terahertz imaging model, named the dual...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232612/ https://www.ncbi.nlm.nih.gov/pubmed/34203842 http://dx.doi.org/10.3390/s21124116 |
Sumario: | Terahertz time domain spectroscopy imaging systems suffer from the problems of long image acquisition time and massive data processing. Reducing the sampling rate will lead to the degradation of the imaging reconstruction quality. To solve this issue, a novel terahertz imaging model, named the dual sparsity constraints terahertz image reconstruction model (DSC-THz), is proposed in this paper. DSC-THz fuses the sparsity constraints of the terahertz image in wavelet and gradient domains into the terahertz image reconstruction model. Differing from the conventional wavelet transform, we introduce a non-linear exponentiation transform into the shift invariant wavelet coefficients, which can amplify the significant coefficients and suppress the small ones. Simultaneously, the sparsity of the terahertz image in gradient domain is used to enhance the sparsity of the image, which has the advantage of edge preserving property. The split Bregman iteration scheme is utilized to tackle the optimization problem. By using the idea of separation of variables, the optimization problem is decomposed into subproblems to solve. Compared with the conventional single sparsity constraint terahertz image reconstruction model, the experiments verified that the proposed approach can achieve higher terahertz image reconstruction quality at low sampling rates. |
---|