Cargando…
In-Pero: Exploiting Deep Learning Embeddings of Protein Sequences to Predict the Localisation of Peroxisomal Proteins
Peroxisomes are ubiquitous membrane-bound organelles, and aberrant localisation of peroxisomal proteins contributes to the pathogenesis of several disorders. Many computational methods focus on assigning protein sequences to subcellular compartments, but there are no specific tools tailored for the...
Autores principales: | Anteghini, Marco, Martins dos Santos, Vitor, Saccenti, Edoardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232616/ https://www.ncbi.nlm.nih.gov/pubmed/34203866 http://dx.doi.org/10.3390/ijms22126409 |
Ejemplares similares
-
OrganelX web server for sub-peroxisomal and sub-mitochondrial protein localization and peroxisomal target signal detection
por: Anteghini, Marco, et al.
Publicado: (2022) -
Insights Into the Peroxisomal Protein Inventory of Zebrafish
por: Kamoshita, Maki, et al.
Publicado: (2022) -
Pero, qué es pero? : esbozo de un análisis semántico de pero /
por: Herrera Meza, María del Carmen
Publicado: (1990) -
Protein domain architectures provide a fast, efficient and scalable alternative to sequence-based methods for comparative functional genomics
por: Koehorst, Jasper J., et al.
Publicado: (2017) -
Pero Galín
por: Estrada, Genaro, 1887-1937