Cargando…
Influence of Fe and Mn on the Microstructure Formation in 5xxx Alloys—Part II: Evolution of Grain Size and Texture
In recent decades, microstructure and texture engineering has become an indispensable factor in meeting the rising demands in mechanical properties and forming behavior of aluminum alloys. Alloying elements, such as Fe and Mn in AlMg(Mn) alloys, affect the number density, size and morphology of both...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232693/ https://www.ncbi.nlm.nih.gov/pubmed/34203865 http://dx.doi.org/10.3390/ma14123312 |
_version_ | 1783713691161591808 |
---|---|
author | Grasserbauer, Jakob Weißensteiner, Irmgard Falkinger, Georg Uggowitzer, Peter J. Pogatscher, Stefan |
author_facet | Grasserbauer, Jakob Weißensteiner, Irmgard Falkinger, Georg Uggowitzer, Peter J. Pogatscher, Stefan |
author_sort | Grasserbauer, Jakob |
collection | PubMed |
description | In recent decades, microstructure and texture engineering has become an indispensable factor in meeting the rising demands in mechanical properties and forming behavior of aluminum alloys. Alloying elements, such as Fe and Mn in AlMg(Mn) alloys, affect the number density, size and morphology of both the primary and secondary phases, thus altering the grain size and orientation of the final annealed sheet by Zener pinning and particle stimulated nucleation (PSN). The present study investigates the grain size and texture of four laboratory processed AlMg(Mn) alloys with various Fe and Mn levels (see Part I). Common models for deriving the Zener-limit grain size are discussed in the light of the experimental data. The results underline the significant grain refinement by dispersoids in high Mn alloys and show a good correlation with the Smith–Zener equation, when weighting the volume fraction of the dispersoids with an exponent of 0.33. Moreover, for high Fe alloys a certain reduction in the average grain size is obtained due to pinning effects and PSN of coarse primary phases. The texture analysis focuses on characteristic texture transformations occurring with pinning effects and PSN. However, the discussion of the texture and typical PSN components is only possible in terms of trends, as all alloys exhibit an almost random distribution of orientations. |
format | Online Article Text |
id | pubmed-8232693 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82326932021-06-26 Influence of Fe and Mn on the Microstructure Formation in 5xxx Alloys—Part II: Evolution of Grain Size and Texture Grasserbauer, Jakob Weißensteiner, Irmgard Falkinger, Georg Uggowitzer, Peter J. Pogatscher, Stefan Materials (Basel) Article In recent decades, microstructure and texture engineering has become an indispensable factor in meeting the rising demands in mechanical properties and forming behavior of aluminum alloys. Alloying elements, such as Fe and Mn in AlMg(Mn) alloys, affect the number density, size and morphology of both the primary and secondary phases, thus altering the grain size and orientation of the final annealed sheet by Zener pinning and particle stimulated nucleation (PSN). The present study investigates the grain size and texture of four laboratory processed AlMg(Mn) alloys with various Fe and Mn levels (see Part I). Common models for deriving the Zener-limit grain size are discussed in the light of the experimental data. The results underline the significant grain refinement by dispersoids in high Mn alloys and show a good correlation with the Smith–Zener equation, when weighting the volume fraction of the dispersoids with an exponent of 0.33. Moreover, for high Fe alloys a certain reduction in the average grain size is obtained due to pinning effects and PSN of coarse primary phases. The texture analysis focuses on characteristic texture transformations occurring with pinning effects and PSN. However, the discussion of the texture and typical PSN components is only possible in terms of trends, as all alloys exhibit an almost random distribution of orientations. MDPI 2021-06-15 /pmc/articles/PMC8232693/ /pubmed/34203865 http://dx.doi.org/10.3390/ma14123312 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Grasserbauer, Jakob Weißensteiner, Irmgard Falkinger, Georg Uggowitzer, Peter J. Pogatscher, Stefan Influence of Fe and Mn on the Microstructure Formation in 5xxx Alloys—Part II: Evolution of Grain Size and Texture |
title | Influence of Fe and Mn on the Microstructure Formation in 5xxx Alloys—Part II: Evolution of Grain Size and Texture |
title_full | Influence of Fe and Mn on the Microstructure Formation in 5xxx Alloys—Part II: Evolution of Grain Size and Texture |
title_fullStr | Influence of Fe and Mn on the Microstructure Formation in 5xxx Alloys—Part II: Evolution of Grain Size and Texture |
title_full_unstemmed | Influence of Fe and Mn on the Microstructure Formation in 5xxx Alloys—Part II: Evolution of Grain Size and Texture |
title_short | Influence of Fe and Mn on the Microstructure Formation in 5xxx Alloys—Part II: Evolution of Grain Size and Texture |
title_sort | influence of fe and mn on the microstructure formation in 5xxx alloys—part ii: evolution of grain size and texture |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232693/ https://www.ncbi.nlm.nih.gov/pubmed/34203865 http://dx.doi.org/10.3390/ma14123312 |
work_keys_str_mv | AT grasserbauerjakob influenceoffeandmnonthemicrostructureformationin5xxxalloyspartiievolutionofgrainsizeandtexture AT weißensteinerirmgard influenceoffeandmnonthemicrostructureformationin5xxxalloyspartiievolutionofgrainsizeandtexture AT falkingergeorg influenceoffeandmnonthemicrostructureformationin5xxxalloyspartiievolutionofgrainsizeandtexture AT uggowitzerpeterj influenceoffeandmnonthemicrostructureformationin5xxxalloyspartiievolutionofgrainsizeandtexture AT pogatscherstefan influenceoffeandmnonthemicrostructureformationin5xxxalloyspartiievolutionofgrainsizeandtexture |