Cargando…
Mandible Segmentation of Dental CBCT Scans Affected by Metal Artifacts Using Coarse-to-Fine Learning Model
Accurate segmentation of the mandible from cone-beam computed tomography (CBCT) scans is an important step for building a personalized 3D digital mandible model for maxillofacial surgery and orthodontic treatment planning because of the low radiation dose and short scanning duration. CBCT images, ho...
Autores principales: | Qiu, Bingjiang, van der Wel, Hylke, Kraeima, Joep, Glas, Haye Hendrik, Guo, Jiapan, Borra, Ronald J. H., Witjes, Max Johannes Hendrikus, van Ooijen, Peter M. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232763/ https://www.ncbi.nlm.nih.gov/pubmed/34208429 http://dx.doi.org/10.3390/jpm11060560 |
Ejemplares similares
-
Robust and Accurate Mandible Segmentation on Dental CBCT Scans Affected by Metal Artifacts Using a Prior Shape Model
por: Qiu, Bingjiang, et al.
Publicado: (2021) -
Automatic Segmentation of Mandible from Conventional Methods to Deep Learning—A Review
por: Qiu, Bingjiang, et al.
Publicado: (2021) -
Recurrent Convolutional Neural Networks for 3D Mandible Segmentation in Computed Tomography
por: Qiu, Bingjiang, et al.
Publicado: (2021) -
Morphological Variation of the Mandible in the Orthognathic Population—A Morphological Study Using Statistical Shape Modelling
por: van der Wel, Hylke, et al.
Publicado: (2023) -
Patient‐specific finite element models of the human mandible: Lack of consensus on current set‐ups
por: Merema, Bram Barteld Jan, et al.
Publicado: (2020)