Cargando…

Residue–Residue Interaction Prediction via Stacked Meta-Learning

Protein–protein interactions (PPIs) are the basis of most biological functions determined by residue–residue interactions (RRIs). Predicting residue pairs responsible for the interaction is crucial for understanding the cause of a disease and drug design. Computational approaches that considered ine...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Kuan-Hsi, Hu, Yuh-Jyh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232778/
https://www.ncbi.nlm.nih.gov/pubmed/34203772
http://dx.doi.org/10.3390/ijms22126393
Descripción
Sumario:Protein–protein interactions (PPIs) are the basis of most biological functions determined by residue–residue interactions (RRIs). Predicting residue pairs responsible for the interaction is crucial for understanding the cause of a disease and drug design. Computational approaches that considered inexpensive and faster solutions for RRI prediction have been widely used to predict protein interfaces for further analysis. This study presents RRI-Meta, an ensemble meta-learning-based method for RRI prediction. Its hierarchical learning structure comprises four base classifiers and one meta-classifier to integrate predictive strengths from different classifiers. It considers multiple feature types, including sequence-, structure-, and neighbor-based features, for characterizing other properties of a residue interaction environment to better distinguish between noninteracting and interacting residues. We conducted the same experiments using the same data as previously reported in the literature to demonstrate RRI-Meta’s performance. Experimental results show that RRI-Meta is superior to several current prediction tools. Additionally, to analyze the factors that affect the performance of RRI-Meta, we conducted a comparative case study using different protein complexes.