Cargando…
Walnut (J. regia) Agro-Residues as a Rich Source of Phenolic Compounds
SIMPLE SUMMARY: Agro-residues are usually discarded as landfill, or burnt or left to decompose in the orchard. The efficient use of these walnut agro-residues would be a strategy that simultaneously helps to preserve the environment and boosts the economic outcome for farmers and companies. While so...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232793/ https://www.ncbi.nlm.nih.gov/pubmed/34203814 http://dx.doi.org/10.3390/biology10060535 |
Sumario: | SIMPLE SUMMARY: Agro-residues are usually discarded as landfill, or burnt or left to decompose in the orchard. The efficient use of these walnut agro-residues would be a strategy that simultaneously helps to preserve the environment and boosts the economic outcome for farmers and companies. While some studies have reported on the content of bioactive compounds in walnut husks, little or nothing is known to date about the bioactive compounds in the buds and bark. Potentially, if walnut parts are used as a valuable source of bioactive compound, they might still be reused for other purposes. The identification and quantification of new phenolics between the different parts of the plant was carried out. It provided valuable data on their phenolic contents, and demonstrated where the extraction of individual phenolics would be meaningful. These data also show origin-related phenolic contents across the cultivars, and thus these phenolic profiles might serve to define the origins of different walnut cultivars. The study will help to propose new directions for further studies essential for agro-food, cosmetics and pharmacy industries. ABSTRACT: The present study was designed to identify and quantify the major phenolic compounds (phenolics) in the inner and outer husks, buds and bark of the Persian walnut, Juglans regia L. A comparison across six different cultivars grown in Slovenia was also carried out: ‘Fernor’, ‘Fernette’, ‘Franquette’, ‘Sava’, ‘Krka’ and ‘Rubina’. A total of 83 compounds were identified, which included 25 naphthoquinones, 15 hydroxycinnamic acids, 8 hydroxybenzoic acids, 13 flavanols, 2 flavones, 1 flavanone and 19 flavonols. For the first time, 38 phenolics in the husks, 57 phenolics in the buds and 29 phenolics in the bark were presented in J. regia within this study. Naphthoquinones were the major phenolics determined, approximately 75% of all analysed phenolics in the inner husk, 85% in the outer husk, 50% in buds and 80% in bark. The highest content of phenolics was found in the walnut buds, followed by the bark, the inner husk and the outer husk. On the basis of these high phenolic contents, walnut husks, buds and bark represented valuable by-products of the walnut tree. These data also show origin-related phenolic contents across the cultivars, and thus these phenolic profiles might serve to define the origins of different walnut cultivars. |
---|