Cargando…

Novel Tsg101 Binding Partners Regulate Viral L Domain Trafficking

Two decades ago, Tsg101, a component of the Endosomal Sorting Complexes Required for Transport (ESCRT) complex 1, was identified as a cellular factor recruited by the human immunodeficiency virus type 1 (HIV-1) to facilitate budding of viral particles assembled at the cell periphery. A highly conser...

Descripción completa

Detalles Bibliográficos
Autores principales: Strickland, Madeleine, Nyenhuis, David, Watanabe, Susan M., Tjandra, Nico, Carter, Carol A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232796/
https://www.ncbi.nlm.nih.gov/pubmed/34203832
http://dx.doi.org/10.3390/v13061147
Descripción
Sumario:Two decades ago, Tsg101, a component of the Endosomal Sorting Complexes Required for Transport (ESCRT) complex 1, was identified as a cellular factor recruited by the human immunodeficiency virus type 1 (HIV-1) to facilitate budding of viral particles assembled at the cell periphery. A highly conserved Pro-(Thr/Ser)-Ala-Pro [P(T/S)AP] motif in the HIV-1 structural polyprotein, Gag, engages a P(T/S)AP-binding pocket in the Tsg101 N-terminal domain. Since the same domain in Tsg101 that houses the pocket was found to bind mono-ubiquitin (Ub) non-covalently, Ub binding was speculated to enhance P(T/S)AP interaction. Within the past five years, we found that the Ub-binding site also accommodates di-Ub, with Lys63-linked di-Ub exhibiting the highest affinity. We also identified small molecules capable of disrupting Ub binding and inhibiting budding. The structural similarity of these molecules, prazoles, to nucleosides prompted testing for nucleic acid binding and led to identification of tRNA as a Tsg101 binding partner. Here, we discuss these recently identified interactions and their contribution to the viral assembly process. These new partners may provide additional insight into the control and function of Tsg101 as well as identify opportunities for anti-viral drug design.