Cargando…

Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex

The granular retrosplenial cortex (RSG) is critical for both spatial and non-spatial behaviors, but the underlying neural codes remain poorly understood. Here, we use optogenetic circuit mapping in mice to reveal a double dissociation that allows parallel circuits in superficial RSG to process dispa...

Descripción completa

Detalles Bibliográficos
Autores principales: Brennan, Ellen KW, Jedrasiak-Cape, Izabela, Kailasa, Sameer, Rice, Sharena P, Sudhakar, Shyam Kumar, Ahmed, Omar J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233040/
https://www.ncbi.nlm.nih.gov/pubmed/34170817
http://dx.doi.org/10.7554/eLife.62207
_version_ 1783713761769553920
author Brennan, Ellen KW
Jedrasiak-Cape, Izabela
Kailasa, Sameer
Rice, Sharena P
Sudhakar, Shyam Kumar
Ahmed, Omar J
author_facet Brennan, Ellen KW
Jedrasiak-Cape, Izabela
Kailasa, Sameer
Rice, Sharena P
Sudhakar, Shyam Kumar
Ahmed, Omar J
author_sort Brennan, Ellen KW
collection PubMed
description The granular retrosplenial cortex (RSG) is critical for both spatial and non-spatial behaviors, but the underlying neural codes remain poorly understood. Here, we use optogenetic circuit mapping in mice to reveal a double dissociation that allows parallel circuits in superficial RSG to process disparate inputs. The anterior thalamus and dorsal subiculum, sources of spatial information, strongly and selectively recruit small low-rheobase (LR) pyramidal cells in RSG. In contrast, neighboring regular-spiking (RS) cells are preferentially controlled by claustral and anterior cingulate inputs, sources of mostly non-spatial information. Precise sublaminar axonal and dendritic arborization within RSG layer 1, in particular, permits this parallel processing. Observed thalamocortical synaptic dynamics enable computational models of LR neurons to compute the speed of head rotation, despite receiving head direction inputs that do not explicitly encode speed. Thus, parallel input streams identify a distinct principal neuronal subtype ideally positioned to support spatial orientation computations in the RSG.
format Online
Article
Text
id pubmed-8233040
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-82330402021-06-28 Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex Brennan, Ellen KW Jedrasiak-Cape, Izabela Kailasa, Sameer Rice, Sharena P Sudhakar, Shyam Kumar Ahmed, Omar J eLife Neuroscience The granular retrosplenial cortex (RSG) is critical for both spatial and non-spatial behaviors, but the underlying neural codes remain poorly understood. Here, we use optogenetic circuit mapping in mice to reveal a double dissociation that allows parallel circuits in superficial RSG to process disparate inputs. The anterior thalamus and dorsal subiculum, sources of spatial information, strongly and selectively recruit small low-rheobase (LR) pyramidal cells in RSG. In contrast, neighboring regular-spiking (RS) cells are preferentially controlled by claustral and anterior cingulate inputs, sources of mostly non-spatial information. Precise sublaminar axonal and dendritic arborization within RSG layer 1, in particular, permits this parallel processing. Observed thalamocortical synaptic dynamics enable computational models of LR neurons to compute the speed of head rotation, despite receiving head direction inputs that do not explicitly encode speed. Thus, parallel input streams identify a distinct principal neuronal subtype ideally positioned to support spatial orientation computations in the RSG. eLife Sciences Publications, Ltd 2021-06-25 /pmc/articles/PMC8233040/ /pubmed/34170817 http://dx.doi.org/10.7554/eLife.62207 Text en © 2021, Brennan et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Neuroscience
Brennan, Ellen KW
Jedrasiak-Cape, Izabela
Kailasa, Sameer
Rice, Sharena P
Sudhakar, Shyam Kumar
Ahmed, Omar J
Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex
title Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex
title_full Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex
title_fullStr Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex
title_full_unstemmed Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex
title_short Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex
title_sort thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233040/
https://www.ncbi.nlm.nih.gov/pubmed/34170817
http://dx.doi.org/10.7554/eLife.62207
work_keys_str_mv AT brennanellenkw thalamusandclaustrumcontrolparallellayer1circuitsinretrosplenialcortex
AT jedrasiakcapeizabela thalamusandclaustrumcontrolparallellayer1circuitsinretrosplenialcortex
AT kailasasameer thalamusandclaustrumcontrolparallellayer1circuitsinretrosplenialcortex
AT ricesharenap thalamusandclaustrumcontrolparallellayer1circuitsinretrosplenialcortex
AT sudhakarshyamkumar thalamusandclaustrumcontrolparallellayer1circuitsinretrosplenialcortex
AT ahmedomarj thalamusandclaustrumcontrolparallellayer1circuitsinretrosplenialcortex