Cargando…
Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex
The granular retrosplenial cortex (RSG) is critical for both spatial and non-spatial behaviors, but the underlying neural codes remain poorly understood. Here, we use optogenetic circuit mapping in mice to reveal a double dissociation that allows parallel circuits in superficial RSG to process dispa...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233040/ https://www.ncbi.nlm.nih.gov/pubmed/34170817 http://dx.doi.org/10.7554/eLife.62207 |
_version_ | 1783713761769553920 |
---|---|
author | Brennan, Ellen KW Jedrasiak-Cape, Izabela Kailasa, Sameer Rice, Sharena P Sudhakar, Shyam Kumar Ahmed, Omar J |
author_facet | Brennan, Ellen KW Jedrasiak-Cape, Izabela Kailasa, Sameer Rice, Sharena P Sudhakar, Shyam Kumar Ahmed, Omar J |
author_sort | Brennan, Ellen KW |
collection | PubMed |
description | The granular retrosplenial cortex (RSG) is critical for both spatial and non-spatial behaviors, but the underlying neural codes remain poorly understood. Here, we use optogenetic circuit mapping in mice to reveal a double dissociation that allows parallel circuits in superficial RSG to process disparate inputs. The anterior thalamus and dorsal subiculum, sources of spatial information, strongly and selectively recruit small low-rheobase (LR) pyramidal cells in RSG. In contrast, neighboring regular-spiking (RS) cells are preferentially controlled by claustral and anterior cingulate inputs, sources of mostly non-spatial information. Precise sublaminar axonal and dendritic arborization within RSG layer 1, in particular, permits this parallel processing. Observed thalamocortical synaptic dynamics enable computational models of LR neurons to compute the speed of head rotation, despite receiving head direction inputs that do not explicitly encode speed. Thus, parallel input streams identify a distinct principal neuronal subtype ideally positioned to support spatial orientation computations in the RSG. |
format | Online Article Text |
id | pubmed-8233040 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-82330402021-06-28 Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex Brennan, Ellen KW Jedrasiak-Cape, Izabela Kailasa, Sameer Rice, Sharena P Sudhakar, Shyam Kumar Ahmed, Omar J eLife Neuroscience The granular retrosplenial cortex (RSG) is critical for both spatial and non-spatial behaviors, but the underlying neural codes remain poorly understood. Here, we use optogenetic circuit mapping in mice to reveal a double dissociation that allows parallel circuits in superficial RSG to process disparate inputs. The anterior thalamus and dorsal subiculum, sources of spatial information, strongly and selectively recruit small low-rheobase (LR) pyramidal cells in RSG. In contrast, neighboring regular-spiking (RS) cells are preferentially controlled by claustral and anterior cingulate inputs, sources of mostly non-spatial information. Precise sublaminar axonal and dendritic arborization within RSG layer 1, in particular, permits this parallel processing. Observed thalamocortical synaptic dynamics enable computational models of LR neurons to compute the speed of head rotation, despite receiving head direction inputs that do not explicitly encode speed. Thus, parallel input streams identify a distinct principal neuronal subtype ideally positioned to support spatial orientation computations in the RSG. eLife Sciences Publications, Ltd 2021-06-25 /pmc/articles/PMC8233040/ /pubmed/34170817 http://dx.doi.org/10.7554/eLife.62207 Text en © 2021, Brennan et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Neuroscience Brennan, Ellen KW Jedrasiak-Cape, Izabela Kailasa, Sameer Rice, Sharena P Sudhakar, Shyam Kumar Ahmed, Omar J Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex |
title | Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex |
title_full | Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex |
title_fullStr | Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex |
title_full_unstemmed | Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex |
title_short | Thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex |
title_sort | thalamus and claustrum control parallel layer 1 circuits in retrosplenial cortex |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233040/ https://www.ncbi.nlm.nih.gov/pubmed/34170817 http://dx.doi.org/10.7554/eLife.62207 |
work_keys_str_mv | AT brennanellenkw thalamusandclaustrumcontrolparallellayer1circuitsinretrosplenialcortex AT jedrasiakcapeizabela thalamusandclaustrumcontrolparallellayer1circuitsinretrosplenialcortex AT kailasasameer thalamusandclaustrumcontrolparallellayer1circuitsinretrosplenialcortex AT ricesharenap thalamusandclaustrumcontrolparallellayer1circuitsinretrosplenialcortex AT sudhakarshyamkumar thalamusandclaustrumcontrolparallellayer1circuitsinretrosplenialcortex AT ahmedomarj thalamusandclaustrumcontrolparallellayer1circuitsinretrosplenialcortex |