Cargando…

A Convolutional Neural Network for Improved Anomaly-Based Network Intrusion Detection

Cybersecurity protects and recovers computer systems and networks from cyber attacks. The importance of cybersecurity is growing commensurately with people's increasing reliance on technology. An anomaly detection-based network intrusion detection system is essential to any security framework w...

Descripción completa

Detalles Bibliográficos
Autores principales: Al-Turaiki, Isra, Altwaijry, Najwa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mary Ann Liebert, Inc., publishers 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233218/
https://www.ncbi.nlm.nih.gov/pubmed/34138657
http://dx.doi.org/10.1089/big.2020.0263
Descripción
Sumario:Cybersecurity protects and recovers computer systems and networks from cyber attacks. The importance of cybersecurity is growing commensurately with people's increasing reliance on technology. An anomaly detection-based network intrusion detection system is essential to any security framework within a computer network. In this article, we propose two models based on deep learning to address the binary and multiclass classification of network attacks. We use a convolutional neural network architecture for our models. In addition, a hybrid two-step preprocessing approach is proposed to generate meaningful features. The proposed approach combines dimensionality reduction and feature engineering using deep feature synthesis. The performance of our models is evaluated using two benchmark data sets, namely the network security laboratory-knowledge discovery in databases data set and the University of New South Wales Network Based 2015 data set. The performance is compared with similar deep learning approaches in the literature, as well as state-of-the-art classification models. Experimental results show that our models achieve good performance in terms of accuracy and recall, outperforming similar models in the literature.