Cargando…
Fast Estimation of L1-Regularized Linear Models in the Mass-Univariate Setting
In certain modeling approaches, activation analyses of task-based fMRI data can involve a relatively large number of predictors. For example, in the encoding model approach, complex stimuli are represented in a high-dimensional feature space, resulting in design matrices with many predictors. Simila...
Autores principales: | Mohr, Holger, Ruge, Hannes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233242/ https://www.ncbi.nlm.nih.gov/pubmed/32935193 http://dx.doi.org/10.1007/s12021-020-09489-1 |
Ejemplares similares
-
Seagull: lasso, group lasso and sparse-group lasso regularization for linear regression models via proximal gradient descent
por: Klosa, Jan, et al.
Publicado: (2020) -
Linear model for fast background subtraction in oligonucleotide microarrays
por: Kroll, K Myriam, et al.
Publicado: (2009) -
STAR_outliers: a python package that separates univariate outliers from non-normal distributions
por: Gregg, John T., et al.
Publicado: (2023) -
Estimating the optimal linear combination of predictors using spherically constrained optimization
por: Das, Priyam, et al.
Publicado: (2022) -
Parsimonious model for mass-univariate vertexwise analysis
por: Couvy-Duchesne, Baptiste, et al.
Publicado: (2022)