Cargando…
Improving Covariance Matrices Derived from Tiny Training Datasets for the Classification of Event-Related Potentials with Linear Discriminant Analysis
Electroencephalogram data used in the domain of brain–computer interfaces typically has subpar signal-to-noise ratio and data acquisition is expensive. An effective and commonly used classifier to discriminate event-related potentials is the linear discriminant analysis which, however, requires an e...
Autores principales: | Sosulski, Jan, Kemmer, Jan-Philipp, Tangermann, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233254/ https://www.ncbi.nlm.nih.gov/pubmed/33319332 http://dx.doi.org/10.1007/s12021-020-09501-8 |
Ejemplares similares
-
The spectrum of covariance matrices of randomly connected recurrent neuronal networks with linear dynamics
por: Hu, Yu, et al.
Publicado: (2022) -
Video based object representation and classification using multiple covariance matrices
por: Zhang, Yurong, et al.
Publicado: (2017) -
Large covariance and autocovariance matrices
por: Bose, Arup, et al.
Publicado: (2018) -
Shrinkage estimation for mean and covariance matrices
por: Tsukuma, Hisayuki, et al.
Publicado: (2020) -
Assessing Trait Covariation and Morphological Integration on Phylogenies Using Evolutionary Covariance Matrices
por: Adams, Dean C., et al.
Publicado: (2014)