Cargando…

The nanoscale molecular morphology of docked exocytic dense-core vesicles in neuroendocrine cells

Rab-GTPases and their interacting partners are key regulators of secretory vesicle trafficking, docking, and fusion to the plasma membrane in neurons and neuroendocrine cells. Where and how these proteins are positioned and organized with respect to the vesicle and plasma membrane are unknown. Here,...

Descripción completa

Detalles Bibliográficos
Autores principales: Prasai, Bijeta, Haber, Gideon J., Strub, Marie-Paule, Ahn, Regina, Ciemniecki, John A., Sochacki, Kem A., Taraska, Justin W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233335/
https://www.ncbi.nlm.nih.gov/pubmed/34172739
http://dx.doi.org/10.1038/s41467-021-24167-9
_version_ 1783713828866883584
author Prasai, Bijeta
Haber, Gideon J.
Strub, Marie-Paule
Ahn, Regina
Ciemniecki, John A.
Sochacki, Kem A.
Taraska, Justin W.
author_facet Prasai, Bijeta
Haber, Gideon J.
Strub, Marie-Paule
Ahn, Regina
Ciemniecki, John A.
Sochacki, Kem A.
Taraska, Justin W.
author_sort Prasai, Bijeta
collection PubMed
description Rab-GTPases and their interacting partners are key regulators of secretory vesicle trafficking, docking, and fusion to the plasma membrane in neurons and neuroendocrine cells. Where and how these proteins are positioned and organized with respect to the vesicle and plasma membrane are unknown. Here, we use correlative super-resolution light and platinum replica electron microscopy to map Rab-GTPases (Rab27a and Rab3a) and their effectors (Granuphilin-a, Rabphilin3a, and Rim2) at the nanoscale in 2D. Next, we apply a targetable genetically-encoded electron microscopy labeling method that uses histidine based affinity-tags and metal-binding gold-nanoparticles to determine the 3D axial location of these exocytic proteins and two SNARE proteins (Syntaxin1A and SNAP25) using electron tomography. Rab proteins are distributed across the entire surface and t-SNARE proteins at the base of docked vesicles. We propose that the circumferential distribution of Rabs and Rab-effectors could aid in the efficient transport, capture, docking, and rapid fusion of calcium-triggered exocytic vesicles in excitable cells.
format Online
Article
Text
id pubmed-8233335
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-82333352021-07-09 The nanoscale molecular morphology of docked exocytic dense-core vesicles in neuroendocrine cells Prasai, Bijeta Haber, Gideon J. Strub, Marie-Paule Ahn, Regina Ciemniecki, John A. Sochacki, Kem A. Taraska, Justin W. Nat Commun Article Rab-GTPases and their interacting partners are key regulators of secretory vesicle trafficking, docking, and fusion to the plasma membrane in neurons and neuroendocrine cells. Where and how these proteins are positioned and organized with respect to the vesicle and plasma membrane are unknown. Here, we use correlative super-resolution light and platinum replica electron microscopy to map Rab-GTPases (Rab27a and Rab3a) and their effectors (Granuphilin-a, Rabphilin3a, and Rim2) at the nanoscale in 2D. Next, we apply a targetable genetically-encoded electron microscopy labeling method that uses histidine based affinity-tags and metal-binding gold-nanoparticles to determine the 3D axial location of these exocytic proteins and two SNARE proteins (Syntaxin1A and SNAP25) using electron tomography. Rab proteins are distributed across the entire surface and t-SNARE proteins at the base of docked vesicles. We propose that the circumferential distribution of Rabs and Rab-effectors could aid in the efficient transport, capture, docking, and rapid fusion of calcium-triggered exocytic vesicles in excitable cells. Nature Publishing Group UK 2021-06-25 /pmc/articles/PMC8233335/ /pubmed/34172739 http://dx.doi.org/10.1038/s41467-021-24167-9 Text en © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Prasai, Bijeta
Haber, Gideon J.
Strub, Marie-Paule
Ahn, Regina
Ciemniecki, John A.
Sochacki, Kem A.
Taraska, Justin W.
The nanoscale molecular morphology of docked exocytic dense-core vesicles in neuroendocrine cells
title The nanoscale molecular morphology of docked exocytic dense-core vesicles in neuroendocrine cells
title_full The nanoscale molecular morphology of docked exocytic dense-core vesicles in neuroendocrine cells
title_fullStr The nanoscale molecular morphology of docked exocytic dense-core vesicles in neuroendocrine cells
title_full_unstemmed The nanoscale molecular morphology of docked exocytic dense-core vesicles in neuroendocrine cells
title_short The nanoscale molecular morphology of docked exocytic dense-core vesicles in neuroendocrine cells
title_sort nanoscale molecular morphology of docked exocytic dense-core vesicles in neuroendocrine cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233335/
https://www.ncbi.nlm.nih.gov/pubmed/34172739
http://dx.doi.org/10.1038/s41467-021-24167-9
work_keys_str_mv AT prasaibijeta thenanoscalemolecularmorphologyofdockedexocyticdensecorevesiclesinneuroendocrinecells
AT habergideonj thenanoscalemolecularmorphologyofdockedexocyticdensecorevesiclesinneuroendocrinecells
AT strubmariepaule thenanoscalemolecularmorphologyofdockedexocyticdensecorevesiclesinneuroendocrinecells
AT ahnregina thenanoscalemolecularmorphologyofdockedexocyticdensecorevesiclesinneuroendocrinecells
AT ciemnieckijohna thenanoscalemolecularmorphologyofdockedexocyticdensecorevesiclesinneuroendocrinecells
AT sochackikema thenanoscalemolecularmorphologyofdockedexocyticdensecorevesiclesinneuroendocrinecells
AT taraskajustinw thenanoscalemolecularmorphologyofdockedexocyticdensecorevesiclesinneuroendocrinecells
AT prasaibijeta nanoscalemolecularmorphologyofdockedexocyticdensecorevesiclesinneuroendocrinecells
AT habergideonj nanoscalemolecularmorphologyofdockedexocyticdensecorevesiclesinneuroendocrinecells
AT strubmariepaule nanoscalemolecularmorphologyofdockedexocyticdensecorevesiclesinneuroendocrinecells
AT ahnregina nanoscalemolecularmorphologyofdockedexocyticdensecorevesiclesinneuroendocrinecells
AT ciemnieckijohna nanoscalemolecularmorphologyofdockedexocyticdensecorevesiclesinneuroendocrinecells
AT sochackikema nanoscalemolecularmorphologyofdockedexocyticdensecorevesiclesinneuroendocrinecells
AT taraskajustinw nanoscalemolecularmorphologyofdockedexocyticdensecorevesiclesinneuroendocrinecells