Cargando…
Crowdsourcing assessment of maternal blood multi-omics for predicting gestational age and preterm birth
Identification of pregnancies at risk of preterm birth (PTB), the leading cause of newborn deaths, remains challenging given the syndromic nature of the disease. We report a longitudinal multi-omics study coupled with a DREAM challenge to develop predictive models of PTB. The findings indicate that...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233692/ https://www.ncbi.nlm.nih.gov/pubmed/34195686 http://dx.doi.org/10.1016/j.xcrm.2021.100323 |
_version_ | 1783713908345798656 |
---|---|
author | Tarca, Adi L. Pataki, Bálint Ármin Romero, Roberto Sirota, Marina Guan, Yuanfang Kutum, Rintu Gomez-Lopez, Nardhy Done, Bogdan Bhatti, Gaurav Yu, Thomas Andreoletti, Gaia Chaiworapongsa, Tinnakorn Hassan, Sonia S. Hsu, Chaur-Dong Aghaeepour, Nima Stolovitzky, Gustavo Csabai, Istvan Costello, James C. |
author_facet | Tarca, Adi L. Pataki, Bálint Ármin Romero, Roberto Sirota, Marina Guan, Yuanfang Kutum, Rintu Gomez-Lopez, Nardhy Done, Bogdan Bhatti, Gaurav Yu, Thomas Andreoletti, Gaia Chaiworapongsa, Tinnakorn Hassan, Sonia S. Hsu, Chaur-Dong Aghaeepour, Nima Stolovitzky, Gustavo Csabai, Istvan Costello, James C. |
author_sort | Tarca, Adi L. |
collection | PubMed |
description | Identification of pregnancies at risk of preterm birth (PTB), the leading cause of newborn deaths, remains challenging given the syndromic nature of the disease. We report a longitudinal multi-omics study coupled with a DREAM challenge to develop predictive models of PTB. The findings indicate that whole-blood gene expression predicts ultrasound-based gestational ages in normal and complicated pregnancies (r = 0.83) and, using data collected before 37 weeks of gestation, also predicts the delivery date in both normal pregnancies (r = 0.86) and those with spontaneous preterm birth (r = 0.75). Based on samples collected before 33 weeks in asymptomatic women, our analysis suggests that expression changes preceding preterm prelabor rupture of the membranes are consistent across time points and cohorts and involve leukocyte-mediated immunity. Models built from plasma proteomic data predict spontaneous preterm delivery with intact membranes with higher accuracy and earlier in pregnancy than transcriptomic models (AUROC = 0.76 versus AUROC = 0.6 at 27–33 weeks of gestation). |
format | Online Article Text |
id | pubmed-8233692 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-82336922021-06-29 Crowdsourcing assessment of maternal blood multi-omics for predicting gestational age and preterm birth Tarca, Adi L. Pataki, Bálint Ármin Romero, Roberto Sirota, Marina Guan, Yuanfang Kutum, Rintu Gomez-Lopez, Nardhy Done, Bogdan Bhatti, Gaurav Yu, Thomas Andreoletti, Gaia Chaiworapongsa, Tinnakorn Hassan, Sonia S. Hsu, Chaur-Dong Aghaeepour, Nima Stolovitzky, Gustavo Csabai, Istvan Costello, James C. Cell Rep Med Article Identification of pregnancies at risk of preterm birth (PTB), the leading cause of newborn deaths, remains challenging given the syndromic nature of the disease. We report a longitudinal multi-omics study coupled with a DREAM challenge to develop predictive models of PTB. The findings indicate that whole-blood gene expression predicts ultrasound-based gestational ages in normal and complicated pregnancies (r = 0.83) and, using data collected before 37 weeks of gestation, also predicts the delivery date in both normal pregnancies (r = 0.86) and those with spontaneous preterm birth (r = 0.75). Based on samples collected before 33 weeks in asymptomatic women, our analysis suggests that expression changes preceding preterm prelabor rupture of the membranes are consistent across time points and cohorts and involve leukocyte-mediated immunity. Models built from plasma proteomic data predict spontaneous preterm delivery with intact membranes with higher accuracy and earlier in pregnancy than transcriptomic models (AUROC = 0.76 versus AUROC = 0.6 at 27–33 weeks of gestation). Elsevier 2021-06-15 /pmc/articles/PMC8233692/ /pubmed/34195686 http://dx.doi.org/10.1016/j.xcrm.2021.100323 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Tarca, Adi L. Pataki, Bálint Ármin Romero, Roberto Sirota, Marina Guan, Yuanfang Kutum, Rintu Gomez-Lopez, Nardhy Done, Bogdan Bhatti, Gaurav Yu, Thomas Andreoletti, Gaia Chaiworapongsa, Tinnakorn Hassan, Sonia S. Hsu, Chaur-Dong Aghaeepour, Nima Stolovitzky, Gustavo Csabai, Istvan Costello, James C. Crowdsourcing assessment of maternal blood multi-omics for predicting gestational age and preterm birth |
title | Crowdsourcing assessment of maternal blood multi-omics for predicting gestational age and preterm birth |
title_full | Crowdsourcing assessment of maternal blood multi-omics for predicting gestational age and preterm birth |
title_fullStr | Crowdsourcing assessment of maternal blood multi-omics for predicting gestational age and preterm birth |
title_full_unstemmed | Crowdsourcing assessment of maternal blood multi-omics for predicting gestational age and preterm birth |
title_short | Crowdsourcing assessment of maternal blood multi-omics for predicting gestational age and preterm birth |
title_sort | crowdsourcing assessment of maternal blood multi-omics for predicting gestational age and preterm birth |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233692/ https://www.ncbi.nlm.nih.gov/pubmed/34195686 http://dx.doi.org/10.1016/j.xcrm.2021.100323 |
work_keys_str_mv | AT tarcaadil crowdsourcingassessmentofmaternalbloodmultiomicsforpredictinggestationalageandpretermbirth AT patakibalintarmin crowdsourcingassessmentofmaternalbloodmultiomicsforpredictinggestationalageandpretermbirth AT romeroroberto crowdsourcingassessmentofmaternalbloodmultiomicsforpredictinggestationalageandpretermbirth AT sirotamarina crowdsourcingassessmentofmaternalbloodmultiomicsforpredictinggestationalageandpretermbirth AT guanyuanfang crowdsourcingassessmentofmaternalbloodmultiomicsforpredictinggestationalageandpretermbirth AT kutumrintu crowdsourcingassessmentofmaternalbloodmultiomicsforpredictinggestationalageandpretermbirth AT gomezlopeznardhy crowdsourcingassessmentofmaternalbloodmultiomicsforpredictinggestationalageandpretermbirth AT donebogdan crowdsourcingassessmentofmaternalbloodmultiomicsforpredictinggestationalageandpretermbirth AT bhattigaurav crowdsourcingassessmentofmaternalbloodmultiomicsforpredictinggestationalageandpretermbirth AT yuthomas crowdsourcingassessmentofmaternalbloodmultiomicsforpredictinggestationalageandpretermbirth AT andreolettigaia crowdsourcingassessmentofmaternalbloodmultiomicsforpredictinggestationalageandpretermbirth AT chaiworapongsatinnakorn crowdsourcingassessmentofmaternalbloodmultiomicsforpredictinggestationalageandpretermbirth AT crowdsourcingassessmentofmaternalbloodmultiomicsforpredictinggestationalageandpretermbirth AT hassansonias crowdsourcingassessmentofmaternalbloodmultiomicsforpredictinggestationalageandpretermbirth AT hsuchaurdong crowdsourcingassessmentofmaternalbloodmultiomicsforpredictinggestationalageandpretermbirth AT aghaeepournima crowdsourcingassessmentofmaternalbloodmultiomicsforpredictinggestationalageandpretermbirth AT stolovitzkygustavo crowdsourcingassessmentofmaternalbloodmultiomicsforpredictinggestationalageandpretermbirth AT csabaiistvan crowdsourcingassessmentofmaternalbloodmultiomicsforpredictinggestationalageandpretermbirth AT costellojamesc crowdsourcingassessmentofmaternalbloodmultiomicsforpredictinggestationalageandpretermbirth |