Cargando…
Remaining Useful Life Prognostics of Bearings Based on a Novel Spatial Graph-Temporal Convolution Network
As key equipment in modern industry, it is important to diagnose and predict the health status of bearings. Data-driven methods for remaining useful life (RUL) prognostics have achieved excellent performance in recent years compared to traditional methods based on physical models. In this paper, we...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233814/ https://www.ncbi.nlm.nih.gov/pubmed/34205477 http://dx.doi.org/10.3390/s21124217 |