Cargando…
Remaining Useful Life Prognostics of Bearings Based on a Novel Spatial Graph-Temporal Convolution Network
As key equipment in modern industry, it is important to diagnose and predict the health status of bearings. Data-driven methods for remaining useful life (RUL) prognostics have achieved excellent performance in recent years compared to traditional methods based on physical models. In this paper, we...
Autores principales: | Li, Peihong, Liu, Xiaozhi, Yang, Yinghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233814/ https://www.ncbi.nlm.nih.gov/pubmed/34205477 http://dx.doi.org/10.3390/s21124217 |
Ejemplares similares
-
Spatial-Temporal Attention Mechanism and Graph Convolutional Networks for Destination Prediction
por: Li, Cong, et al.
Publicado: (2022) -
Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network
por: Wang, Haitao, et al.
Publicado: (2022) -
Sparse Spatial-Temporal Emotion Graph Convolutional Network for Video Emotion Recognition
por: Liu, Xiaodong, et al.
Publicado: (2022) -
A Spatial-Temporal Graph Convolutional Recurrent Network for Transportation Flow Estimation
por: Drosouli, Ifigenia, et al.
Publicado: (2023) -
Enhanced Spatial and Extended Temporal Graph Convolutional Network for Skeleton-Based Action Recognition
por: Li, Fanjia, et al.
Publicado: (2020)