Cargando…
Reliability of Machine and Human Examiners for Detection of Laryngeal Penetration or Aspiration in Videofluoroscopic Swallowing Studies
Computer-assisted analysis is expected to improve the reliability of videofluoroscopic swallowing studies (VFSSs), but its usefulness is limited. Previously, we proposed a deep learning model that can detect laryngeal penetration or aspiration fully automatically in VFSS video images, but the eviden...
Autores principales: | Kim, Yuna, Kim, Hyun-Il, Park, Geun Seok, Kim, Seo Young, Choi, Sang-Il, Lee, Seong Jae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233836/ https://www.ncbi.nlm.nih.gov/pubmed/34207049 http://dx.doi.org/10.3390/jcm10122681 |
Ejemplares similares
-
Predictors of Aspiration Pneumonia in the Elderly With Swallowing Dysfunction: Videofluoroscopic Swallowing Study
por: Ko, Joo Young, et al.
Publicado: (2021) -
Deep Learning Analysis to Automatically Detect the Presence of Penetration or Aspiration in Videofluoroscopic Swallowing Study
por: Kim, Jeoung Kun, et al.
Publicado: (2022) -
Hyoid Bone Tracking in a Videofluoroscopic Swallowing Study Using a Deep-Learning-Based Segmentation Network
por: Kim, Hyun-Il, et al.
Publicado: (2021) -
Adding Endoscopist-Directed Flexible Endoscopic Evaluation of Swallowing to the Videofluoroscopic Swallowing Study Increased the Detection Rates of Penetration, Aspiration, and Pharyngeal Residue
por: Park, Won Young, et al.
Publicado: (2015) -
Comparison of Videofluoroscopic Swallowing Study and Radionuclide Salivagram for Aspiration Pneumonia in Children With Swallowing Difficulty
por: Kim, Go Eun, et al.
Publicado: (2018)