Cargando…
Supervised Analysis for Phenotype Identification: The Case of Heart Failure Ejection Fraction Class
Artificial Intelligence is creating a paradigm shift in health care, with phenotyping patients through clustering techniques being one of the areas of interest. Objective: To develop a predictive model to classify heart failure (HF) patients according to their left ventricular ejection fraction (LVE...
Autores principales: | Lopez, Cristina, Holgado, Jose Luis, Cortes, Raquel, Sauri, Inma, Fernandez, Antonio, Calderon, Jose Miguel, Nuñez, Julio, Redon, Josep |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233943/ https://www.ncbi.nlm.nih.gov/pubmed/34205745 http://dx.doi.org/10.3390/bioengineering8060085 |
Ejemplares similares
-
Acute kidney injury in heart failure: a population study
por: Holgado, Jose Luis, et al.
Publicado: (2020) -
Impact of Acute Hemoglobin Falls in Heart Failure Patients: A Population Study
por: Lopez, Cristina, et al.
Publicado: (2020) -
Incidence and impact of atrial fibrillation in heart failure patients: real‐world data in a large community
por: Diaz, Javier, et al.
Publicado: (2022) -
Heart Failure with Preserved Ejection Fraction: An Urgent Need for Precision Medicine
por: Miñana, Gema, et al.
Publicado: (2021) -
Carbohydrate antigen 125 and risk of heart failure readmissions in patients with heart failure and preserved ejection fraction
por: Miñana, Gema, et al.
Publicado: (2022)