Cargando…

Differentiation of Idiopathic Pulmonary Fibrosis from Connective Tissue Disease-Related Interstitial Lung Disease Using Quantitative Imaging

A usual interstitial pneumonia (UIP) imaging pattern can be seen in both idiopathic pulmonary fibrosis (IPF) and connective tissue disease-related interstitial lung disease (CTD-ILD). The purpose of this multicenter study was to assess whether quantitative imaging data differ between IPF and CTD-ILD...

Descripción completa

Detalles Bibliográficos
Autores principales: Chung, Jonathan H., Adegunsoye, Ayodeji, Cannon, Brenna, Vij, Rekha, Oldham, Justin M., King, Christopher, Montner, Steven M., Thirkateh, Prahasit, Barnett, Scott, Karwoski, Ronald, Bartholmai, Brian J., Strek, Mary, Nathan, Steven D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8233999/
https://www.ncbi.nlm.nih.gov/pubmed/34204184
http://dx.doi.org/10.3390/jcm10122663
Descripción
Sumario:A usual interstitial pneumonia (UIP) imaging pattern can be seen in both idiopathic pulmonary fibrosis (IPF) and connective tissue disease-related interstitial lung disease (CTD-ILD). The purpose of this multicenter study was to assess whether quantitative imaging data differ between IPF and CTD-ILD in the setting of UIP. Patients evaluated at two medical centers with CTD-ILD or IPF and a UIP pattern on CT or pathology served as derivation and validation cohorts. Chest CT data were quantitatively analyzed including total volumes of honeycombing, reticulation, ground-glass opacity, normal lung, and vessel related structures (VRS). VRS was compared with forced vital capacity percent predicted (FVC%) and percent predicted diffusing capacity of the lungs for carbon monoxide (DLCO%). There were 296 subjects in total, with 40 CTD-ILD and 85 IPF subjects in the derivation cohort, and 62 CTD-ILD and 109 IPF subjects in the validation cohort. VRS was greater in IPF across the cohorts on univariate (p < 0.001) and multivariable (p < 0.001–0.047) analyses. VRS was inversely correlated with DLCO% in both cohorts on univariate (p < 0.001) and in the derivation cohort on multivariable analysis (p = 0.003) but not FVC%. Total volume of normal lung was associated with DLCO% (p < 0.001) and FVC% (p < 0.001–0.009) on multivariable analysis in both cohorts. VRS appears to have promise in differentiating CTD-ILD from IPF. The underlying pathophysiological relationship between VRS and ILD is complex and is likely not explained solely by lung fibrosis.