Cargando…
Predicting Drug–Target Interactions Based on the Ensemble Models of Multiple Feature Pairs
Backgroud: The prediction of drug–target interactions (DTIs) is of great significance in drug development. It is time-consuming and expensive in traditional experimental methods. Machine learning can reduce the cost of prediction and is limited by the characteristics of imbalanced datasets and probl...
Autores principales: | Wang, Cheng, Zhang, Jun, Chen, Peng, Wang, Bing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234024/ https://www.ncbi.nlm.nih.gov/pubmed/34202954 http://dx.doi.org/10.3390/ijms22126598 |
Ejemplares similares
-
DrugECs: An Ensemble System with Feature Subspaces for Accurate Drug-Target Interaction Prediction
por: Jiang, Jinjian, et al.
Publicado: (2017) -
An ensemble-based drug–target interaction prediction approach using multiple feature information with data balancing
por: El-Behery, Heba, et al.
Publicado: (2022) -
Identifying potential drug-target interactions based on ensemble deep learning
por: Zhou, Liqian, et al.
Publicado: (2023) -
Hot spot prediction in protein-protein interactions by an ensemble system
por: Liu, Quanya, et al.
Publicado: (2018) -
In Silico Prediction of Drug-Induced Liver Injury Based on Ensemble Classifier Method
por: Wang, Yangyang, et al.
Publicado: (2019)