Cargando…
Statistical Inference for Periodic Self-Exciting Threshold Integer-Valued Autoregressive Processes
This paper considers the periodic self-exciting threshold integer-valued autoregressive processes under a weaker condition in which the second moment is finite instead of the innovation distribution being given. The basic statistical properties of the model are discussed, the quasi-likelihood infere...
Autores principales: | Liu, Congmin, Cheng, Jianhua, Wang, Dehui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234043/ https://www.ncbi.nlm.nih.gov/pubmed/34204491 http://dx.doi.org/10.3390/e23060765 |
Ejemplares similares
-
Empirical Likelihood for a First-Order Generalized Random Coefficient Integer-Valued Autoregressive Process
por: Cheng, Jianhua, et al.
Publicado: (2023) -
Detection of Parameter Change in Random Coefficient Integer-Valued Autoregressive Models
por: Kang, Jiwon
Publicado: (2018) -
A New First-Order Integer-Valued Autoregressive Model with Bell Innovations
por: Huang, Jie, et al.
Publicado: (2021) -
A New Extension of Thinning-Based Integer-Valued Autoregressive Models for Count Data
por: Liu, Zhengwei, et al.
Publicado: (2020) -
A first-order binomial-mixed Poisson integer-valued autoregressive model with serially dependent innovations
por: Chen, Zezhun, et al.
Publicado: (2021)