Cargando…
Potential Application of an Aqueous Extract of Tinospora Cordifolia (Thunb.) Miers (Giloy) in Oral Submucous Fibrosis—An In Vitro Study
The in vitro antifibrotic activity of Tinospora cordifolia (Thunb.) Miers (giloy) was assessed to explore its potential for the management of oral submucous fibrosis. Epithelial cells dissociated from the tissue obtained from histopathologically normal oral mucosa during surgical extraction of third...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234184/ https://www.ncbi.nlm.nih.gov/pubmed/34207082 http://dx.doi.org/10.3390/ma14123374 |
_version_ | 1783714024732491776 |
---|---|
author | Patil, Shankargouda |
author_facet | Patil, Shankargouda |
author_sort | Patil, Shankargouda |
collection | PubMed |
description | The in vitro antifibrotic activity of Tinospora cordifolia (Thunb.) Miers (giloy) was assessed to explore its potential for the management of oral submucous fibrosis. Epithelial cells dissociated from the tissue obtained from histopathologically normal oral mucosa during surgical extraction of third molars were cultured and fibrosis was induced by TGF-β1 in the oral keratinocytes. Cell viability was assessed by MTT and comparative gene expression analysis was carried out in the fibrosis-induced oral keratinocytes treated with various concentrations of Tinospora cordifolia extract (TcE) for matricellular protein-related gene expression. Concentrations of 0.5 µg/mL and 1 µg/mL TcE demonstrated a significant reduction in the expression of CTGF, SERPINE1, COL1A1, FN1, MMP1, MMP2, MMP3, and TIMP2 and an increase in the expression of PLAU, COL3A1, TIMP1, and TIMP3. Although TcE was found to reduce the expression of several fibrotic genes and increase the expression of antifibrotic genes, a varied effect was found, causing increased expression of COL3A1 and decreased expression of TIMP2 on TGF-β1-induced human buccal epithelial cells. However, further studies are warranted to assess the exact mechanism of antifibrotic activity and its clinical applications. |
format | Online Article Text |
id | pubmed-8234184 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-82341842021-06-27 Potential Application of an Aqueous Extract of Tinospora Cordifolia (Thunb.) Miers (Giloy) in Oral Submucous Fibrosis—An In Vitro Study Patil, Shankargouda Materials (Basel) Article The in vitro antifibrotic activity of Tinospora cordifolia (Thunb.) Miers (giloy) was assessed to explore its potential for the management of oral submucous fibrosis. Epithelial cells dissociated from the tissue obtained from histopathologically normal oral mucosa during surgical extraction of third molars were cultured and fibrosis was induced by TGF-β1 in the oral keratinocytes. Cell viability was assessed by MTT and comparative gene expression analysis was carried out in the fibrosis-induced oral keratinocytes treated with various concentrations of Tinospora cordifolia extract (TcE) for matricellular protein-related gene expression. Concentrations of 0.5 µg/mL and 1 µg/mL TcE demonstrated a significant reduction in the expression of CTGF, SERPINE1, COL1A1, FN1, MMP1, MMP2, MMP3, and TIMP2 and an increase in the expression of PLAU, COL3A1, TIMP1, and TIMP3. Although TcE was found to reduce the expression of several fibrotic genes and increase the expression of antifibrotic genes, a varied effect was found, causing increased expression of COL3A1 and decreased expression of TIMP2 on TGF-β1-induced human buccal epithelial cells. However, further studies are warranted to assess the exact mechanism of antifibrotic activity and its clinical applications. MDPI 2021-06-18 /pmc/articles/PMC8234184/ /pubmed/34207082 http://dx.doi.org/10.3390/ma14123374 Text en © 2021 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Patil, Shankargouda Potential Application of an Aqueous Extract of Tinospora Cordifolia (Thunb.) Miers (Giloy) in Oral Submucous Fibrosis—An In Vitro Study |
title | Potential Application of an Aqueous Extract of Tinospora Cordifolia (Thunb.) Miers (Giloy) in Oral Submucous Fibrosis—An In Vitro Study |
title_full | Potential Application of an Aqueous Extract of Tinospora Cordifolia (Thunb.) Miers (Giloy) in Oral Submucous Fibrosis—An In Vitro Study |
title_fullStr | Potential Application of an Aqueous Extract of Tinospora Cordifolia (Thunb.) Miers (Giloy) in Oral Submucous Fibrosis—An In Vitro Study |
title_full_unstemmed | Potential Application of an Aqueous Extract of Tinospora Cordifolia (Thunb.) Miers (Giloy) in Oral Submucous Fibrosis—An In Vitro Study |
title_short | Potential Application of an Aqueous Extract of Tinospora Cordifolia (Thunb.) Miers (Giloy) in Oral Submucous Fibrosis—An In Vitro Study |
title_sort | potential application of an aqueous extract of tinospora cordifolia (thunb.) miers (giloy) in oral submucous fibrosis—an in vitro study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234184/ https://www.ncbi.nlm.nih.gov/pubmed/34207082 http://dx.doi.org/10.3390/ma14123374 |
work_keys_str_mv | AT patilshankargouda potentialapplicationofanaqueousextractoftinosporacordifoliathunbmiersgiloyinoralsubmucousfibrosisaninvitrostudy |