Cargando…

Structures of the alkanesulfonate monooxygenase MsuD provide insight into C–S bond cleavage, substrate scope, and an unexpected role for the tetramer

Bacterial two-component flavin-dependent monooxygenases cleave the stable C–S bond of environmental and anthropogenic organosulfur compounds. The monooxygenase MsuD converts methanesulfonate (MS(−)) to sulfite, completing the sulfur assimilation process during sulfate starvation, but the mechanism o...

Descripción completa

Detalles Bibliográficos
Autores principales: Liew, Jeremy J.M., El Saudi, Israa M., Nguyen, Son V., Wicht, Denyce K., Dowling, Daniel P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234197/
https://www.ncbi.nlm.nih.gov/pubmed/34029591
http://dx.doi.org/10.1016/j.jbc.2021.100823
Descripción
Sumario:Bacterial two-component flavin-dependent monooxygenases cleave the stable C–S bond of environmental and anthropogenic organosulfur compounds. The monooxygenase MsuD converts methanesulfonate (MS(−)) to sulfite, completing the sulfur assimilation process during sulfate starvation, but the mechanism of this conversion remains unclear. To explore the mechanism of C–S bond cleavage, we report a series of crystal structures of MsuD from Pseudomonas fluorescens in different liganded states. This report provides the first crystal structures of an alkanesulfonate monooxygenase with a bound flavin and alkanesulfonate, elucidating the roles of the active site lid, the protein C terminus, and an active site loop in flavin and/or alkanesulfonate binding. These structures position MS(−) closest to the flavin N5 position, consistent with an N5-(hydro)peroxyflavin mechanism rather than a classical C4a-(hydro)peroxyflavin mechanism. A fully enclosed active site is observed in the ternary complex, mediated by interchain interaction of the C terminus at the tetramer interface. These structures identify an unexpected function of the protein C terminus in this protein family in stabilizing tetramer formation and the alkanesulfonate-binding site. Spurred by interest from the crystal structures, we conducted biochemical assays and molecular docking that redefine MsuD as a small- to medium-chain alkanesulfonate monooxygenase. Functional mutations verify the sulfonate-binding site and reveal the critical importance of the protein C terminus for monooxygenase function. These findings reveal a deeper understanding of MsuD’s functionality at the molecular level and consequently how it operates within its role as part of the sulfur assimilation pathway.