Cargando…

RGB-D Data-Based Action Recognition: A Review

Classification of human actions is an ongoing research problem in computer vision. This review is aimed to scope current literature on data fusion and action recognition techniques and to identify gaps and future research direction. Success in producing cost-effective and portable vision-based senso...

Descripción completa

Detalles Bibliográficos
Autores principales: Shaikh, Muhammad Bilal, Chai, Douglas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234200/
https://www.ncbi.nlm.nih.gov/pubmed/34205782
http://dx.doi.org/10.3390/s21124246
Descripción
Sumario:Classification of human actions is an ongoing research problem in computer vision. This review is aimed to scope current literature on data fusion and action recognition techniques and to identify gaps and future research direction. Success in producing cost-effective and portable vision-based sensors has dramatically increased the number and size of datasets. The increase in the number of action recognition datasets intersects with advances in deep learning architectures and computational support, both of which offer significant research opportunities. Naturally, each action-data modality—such as RGB, depth, skeleton, and infrared (IR)—has distinct characteristics; therefore, it is important to exploit the value of each modality for better action recognition. In this paper, we focus solely on data fusion and recognition techniques in the context of vision with an RGB-D perspective. We conclude by discussing research challenges, emerging trends, and possible future research directions.