Cargando…
A CNN-Based Autoencoder and Machine Learning Model for Identifying Betel-Quid Chewers Using Functional MRI Features
Betel quid (BQ) is one of the most commonly used psychoactive substances in some parts of Asia and the Pacific. Although some studies have shown brain function alterations in BQ chewers, it is virtually impossible for radiologists’ to visually distinguish MRI maps of BQ chewers from others. In this...
Autores principales: | Ho, Ming-Chou, Shen, Hsin-An, Chang, Yi-Peng Eve, Weng, Jun-Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234239/ https://www.ncbi.nlm.nih.gov/pubmed/34207169 http://dx.doi.org/10.3390/brainsci11060809 |
Ejemplares similares
-
Genomic Alterations in Breast Cancer Patients in Betel Quid and Non Betel Quid Chewers
por: Kaushal, Mishi, et al.
Publicado: (2012) -
Dysfunction of the Prefrontal Cortex in Betel-Quid–Dependent Chewers
por: Kong, Lingyu, et al.
Publicado: (2020) -
Altered Brain Functional Connectivity in Betel Quid-Dependent Chewers
por: Huang, Xiaojun, et al.
Publicado: (2017) -
Development and Validation of a Self-Administered Screening Test for Betel Quid Use Disorders in Betel Quid Chewers in Hunan, China
por: Yang, Lei, et al.
Publicado: (2022) -
Peri-implant clinicoradiographic status among betel-quid chewers and
controls
por: Alqutub, Montaser N, et al.
Publicado: (2022)